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Fig. 1: VF-NeRF . Using the recently proposed Vector Field (VF) [41] representation,
our method reconstructs indoor scenes in the NeRF setting. Due to the planar inductive
bias of VF, we can generally recover indoor scenes with high fidelity, providing State-
of-the-Art (SOTA) performance.

Abstract. Implicit surfaces via neural radiance fields (NeRF) have shown
surprising accuracy in surface reconstruction. Despite their success in
reconstructing richly textured surfaces, existing methods struggle with
planar regions with weak textures, which account for the majority of
the indoor scenes. In this paper, we address indoor dense surface recon-
struction by revisiting key aspects of NeRF in order to use the recently
proposed Vector Field (VF) as the implicit representation. VF is defined
by the unit vector directed to the nearest surface point. It therefore
flips direction at the surface, and equals to the explicit surface normals.
Except for this flip, VF remains constant along planar surfaces and pro-
vides a strong inductive bias in representing planar surface. Concretely,
we develop a novel density-VF relationship and a training scheme that
allows us to learn VF via volume rendering. By doing this, VF-NeRF
can model large planar surfaces and sharp corners accurately. Addition-
ally, we show that, when depth cues are available, our method further
improves and achieves state-of-the-art results in reconstructing indoor
scenes and rendering novel views. We extensively evaluate VF-NeRF on
public datasets such as Replica and ScanNet and run comprehensive ab-
lations of its components.

* The authors contributed equally to the work
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1 Introduction

Multi-view image-based 3D scene reconstruction is a cornerstone challenge in
computer vision [17,43,46]. Traditional multi-view stereo (MVS) algorithms [11,
42,43,49,60] leverage matching and triangulation to derive 3D point coordinates
from given input images. Nonetheless, they often struggle in regions charac-
terized by uniform low-texture or repetitive patterns. Equipped with volume
rendering, Neural Radiance Fields (NeRF) [34,51,56] and its variants [26,30,33]
have established themselves as powerful alternatives to previous methods for
surface reconstruction. However, NeRF methods still struggle with low-texture
indoor surfaces, even when using Manhattan normal priors [8, 16].

NeRF for indoor scene reconstruction has currently two significant challenges.
The first is that the classical NeRF surface density [34], which provides high-
quality view rendering, stumbles significantly when it comes to scene geometry
reconstruction. Even when an SDF [51, 56] representation is used for the geom-
etry, any surface regularization for planar surfaces has to rely on the gradients
of the SDF [16]. Note that these gradients are often noisy and unreliable for
regularization. An additional downside of SDF is that its representation power
is limited to water-tight surfaces. Therefore, it may not be able to faithfully re-
construct thin or open surfaces. The second challenge stems from poor texture
in indoor surfaces, which provides weak multi-view constraints for the indirect
triangulation in NeRF or direct triangulation in MVS approaches.

In this paper, we address the first challenge, that of the implicit scene repre-
sentation in NeRF. In the process, we also push towards mitigating the challenge
of weak texture through an improved inductive bias towards planar surfaces. To
that end, we make use of the recently proposed Vector Field (VF) representa-
tion [41,53] in order to encode the scene geometry. This involves associating each
position in the 3D space with a unit vector directed towards the nearest surface.
It has been shown that VF may exhibit superior performance to SDF even on
closed surfaces, particularly on sharp corners, thin objects and planar surfaces.
This is due to the properties of VF and its inductive bias towards planar sur-
faces as they exhibit a constant normal along flat surfaces. However, the study
confines itself to a supervised learning paradigm, and the self-supervised learn-
ing with NeRF poses significant challenges. Notably, without the ground-truth
VF, a pair of points is required to compute the surface density given the VF
predictions.

In the VF optimization, we use a dual MLP network, one to predict the VF
and the other to predict the RGB color values. We learn the VF and the color
through a training scheme via volume rendering on multi-view posed images
similarly to VolSDF [51, 56]. Specifically, we express the surface density via the
cosine similarity of the VF predictions in the ray samples, which are obtained
in a hierarchical manner. This novel VF-density relationship allows us to use
neural volume rendering in order to train the VF as in [51, 56]. As a first study
on VF for NeRF, we consider its use for learning indoor scene geometry. We
rigorously evaluate our method against leading benchmarks for indoor scenes,
including ManhattanSDF [16], MonoSDF [59], and Neuralangelo [25], on indoor
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Fig. 2: VF-NeRF overview. We use VF to represent the geometry of a scene. Specif-
ically, given an input image taken from the camera view position, we shoot a batch of
rays onto the 3D scene. We predict the VF and color of the points along the ray using
geometry and color decoders, two sets of MLPs. By computing the cosine similarity
between neighboring points on the ray, we can identify the surface as the locations
where the value equals −1; this happens when the two predicted vectors have opposing
directions. From the cosine similarity, we then differentiably compute the surface den-
sity required for volume rendering. We render the RGB and depth in order to compute
the re-rendering losses. We then optimize them together with the regularization terms
for the network parameters.

datasets such as Replica [47] and ScanNet [9], showing superior performance on
both reconstruction and novel view rendering.

In summary, our contributions are threefold:

– We propose to learn the VF representation of 3D scenes with multi-view
images via volume rendering.

– We develop an efficient hierarchical ray sampling approach, which allows us
to sample more densely near surfaces.

– We demonstrate the effectiveness of our method on different indoor scene
datasets, showing state-of-the-art results.

2 Related work

Multi-view Surface Reconstruction. Traditional MVS approaches have of-
ten relied on feature matching for depth estimation [2–4, 12, 24, 42–44]. These
classical methods extract image features, match them across views for depth
estimation, and then fuse the obtained depth maps to form dense point clouds.
Voxel-based representations [1,11,45] rely on color consistency between the pro-
jected images to generate an occupancy grid of voxels. Subsequently, meshing
techniques, like Poisson surface reconstruction [21, 22] are applied to delineate
the surface. However, these methods typically fail to reconstruct low-textured re-
gions and non-Lambertian surfaces. Additionally, the reconstructed point clouds
or meshes are often noisy and may fail to reconstruct some surfaces.

Recently, learning-based methods have gained attention, offering replace-
ments for classic MVS methods. Methods like [5, 18, 54, 55] leverage 3D CNNs
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to extract features and predict depth maps, while others [6, 15] construct cost
volumes hierarchically, yielding high-resolution results. However, these methods
often fail to accurately reconstruct the scene geometry due to the limited reso-
lution of the cost volume.

Neural Radiance Fields (NeRF). In recent studies [30,33,34,40] the potential
of MLPs to represent scenes both in terms of density and appearance has been
explored. While these techniques can produce photorealistic results for novel view
synthesis, determining an isosurface for the volume density to reconstruct scene
geometry remains a challenge. Commonly, NeRF uses thresholding techniques
to derive surfaces from the predicted density. However, these extracted surfaces
can often exhibit noise and inaccuracies.

Neural Scene Representations. Approaches based on neural scene represen-
tations employ deep learning to learn properties of 3D points and to generate
geometry. Traditional methods like point clouds [10, 28] and voxel grids [7, 52]
have been primary choices for representing scene geometry. More recently, im-
plicit functions, such as occupancy grids [36, 37], SDF [19, 25, 31, 38, 51, 56, 57],
and VF [41,53] have gained popularity due to their precision in capturing scene
geometry. For instance, in [31, 36] a novel differentiable renderer to learn the
scene geometry from images is proposed, while [57] focuses on modeling view-
dependent appearance, which proves successful on non-Lambertian surfaces. [29],
instead, utilizes 2D silhouettes from single images to reconstruct their underly-
ing 3D shape. However, these methods rely on masks to accurately reconstruct
the geometry from multi-view images. Consequent works, such as VolSDF [56]
and NeuS [51] introduce a second MLP in the NeRF context to represent the
geometry as the SDF, further leveraging volume rendering to learn the geometry
from images. Building upon these methods, Neuralangelo [25] takes inspiration
from Instant Neural Graphics Primitives (Instant NGP) [35] to introduce hash
encodings in neural SDF models, enhancing surface reconstruction resolution.
However, a challenge persists as these methods tend to fail in large indoor planar
scenes with low-texture regions, leading to inaccurate surface reconstructions.

Priors for Neural Scene Representations. Several works have explored the
integration of priors during optimization to improve the reconstruction of in-
door scenes. For instance, Manhattan-SDF [16] suggests incorporating dense
depth maps from COLMAP [43] to facilitate the learning of 3D geometry and
employs Manhattan world [8] priors to address the challenges posed by low-
textured planar surfaces. A limitation of this approach is its reliance on seman-
tic segmentation masks to pinpoint planar regions, adhering to the Manhattan
world assumption. This dependency can lead to added complexity and potential
inaccuracies in regions where segmentations are less accurate. More recently,
NeuRIS [50] proposes to use normal priors to guide the reconstruction of in-
door scenes. Expanding on this work, MonoSDF [59] introduces both normal
and depth monocular cues into the optimization.
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3 Method

Given a set of posed images of an indoor scene, our goal is to reconstruct the
dense scene geometry. We represent the surface geometry in NeRF with VF [41,
53], and describe its properties in Sec. 3.1. We then introduce the surface density
as a parametrization of the VF in Sec. 3.2 and describe our hierarchical ray
sampling method in Sec. 3.3. Finally, in Sec. 3.4, we formulate the optimization
problem and introduce the loss terms. We provide an overview in Fig. 2.

3.1 Vector Field Representation

In VF-NeRF , the scene geometry is defined using unit vectors that point towards
the nearest surface. Let Ω ⊂ R3 be the surface of an object in R3 and Γ ⊂ R3

be the set of unit norm 3-vectors. We make use of the VF definition [41]: VF is
a function f : R3 → Γ that maps a point in space to a unit vector directed to
the closest surface point of Ω:

  \vfFunction (\loc ) = \begin {cases} \dfrac {\surfaceLoc - \loc }{|| \surfaceLoc - \loc ||_2} & \text {if } \loc \notin \Omega \\ \dfrac {\widehat {\loc }_S - \widehat {\loc }}{|| \widehat {\loc }_S - \widehat {\loc } ||_2} & \text {if } \loc \in \Omega \end {cases} \label {eq:vf_representation} 


 

 
    

     
(1)

where xS = argmins∈Ω ||x − s||2 is the closest surface point with respect to
x, and x̂ = lim

||ϵ||2→0
x + ϵ is a point close to the surface, with ϵ ∈ R3 being an

infinitesimal 3D vector.
Given the definition of the VF representation, we identify a surfaceΩ between

a point x ∈ R3 and an infinitesimally close neighbor using the cosine similarity
between the VF at the two points. When the two points are on opposite sides
of the surface Ω, their cosine similarity approaches −1. Conversely, it is close to
1 everywhere else, except at diverging discontinuities of the field.

  \Omega = \{ \loc _1, \loc _2 = \loc _1 + \epsilon | \cos {(\vfFunction (\loc _1), \vfFunction (\loc _2)) < \tau }\}, \quad \cos {(\vf _1, \vf _2)} = \dfrac {\vf _1 \cdot \vf _2}{||\vf _1||_2||\vf _2||_2}             
 


(2)

where ϵ ∈ R3 is an infinitesimal displacement and |τ | ≤ 1 is a cosine similarity
threshold. Ideally, τ = −1 for infinitesimally close neighbors.

From these definitions, we notice a similarity to the surface density σ : R3 →
R≥0, a function that indicates the rate at which a ray is occluded at location
x. Ideally, for non-translucid surfaces, σ(x) behaves as a delta function, being
zero everywhere except at the surface. To model this function typically used in
volume rendering [20, 34], a simple transformation of the cosine similarity can
be used. In fact, the cosine similarity between the VF of infinitesimally close
neighbors is a delta function itself, yielding approximately 1 everywhere and −1
at the surface. However, as we show, a smooth function is necessary in order to
ease the learning of VF through volume rendering.
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Fig. 3: (a) Density using non-averaged and averaged cosine similarity. The
figures show the VF, cosine similarity and density of a ray crossing a surface. Top:
density as a transformation of the cosine similarity. This yields a sharp function similar
to the delta function centered at the surface. Bottom: Density as a transformation of
the weighted average cosine similarity. This produces a smoother function with the
maximum centered at the surface.
(b) Sliding window weights annealing example and hierarchical sampling.
Top: Example of weights at different stages of the annealing. In this case, the sliding
window contains 6 weights. At the beginning of the training (epoch 0), the weights for
each neighbor are equal. At the end of the training (epoch 100) the cosine similarity is
computed only with respect to the closest next neighbor. Bottom: Initially, we sample
uniform points along the ray and compute the surface density through the predicted
VF. We then densely sample points within a range dsamples centered at the maximum
of the surface density.

3.2 Density as Transformed VF

We draw inspiration from existing methods [51, 56], which use neural volume
rendering to learn the geometry of a scene as an implicit function. Contrary to
these previous methods that use SDF, we propose to model the surface density
as a function of the learnable VF. Given a viewing ray and the VF sampled
at multiple points along the ray, we use a differentiable process to estimate the
surface density. As previously highlighted, the cosine similarity of the VF at
neighboring points along the ray can be used to indicate whether there is a sur-
face between them. The resulting surface density function, showcased in Fig. 3a
top row, closely resembles a delta function. This behavior is desirable in order
to obtain sharp reconstructions; however, due to its discontinuity, the desired
convergence is hard to achieve. In order to make the gradient-based optimiza-
tion tractable, we first need a smoothing transformation. To this end, we adopt
a sliding window approach and compute a weighted average cosine similarity.
We thus smooth the function at points near the surface. The effect of the sliding
window can be seen in the bottom row of Fig. 3a.

Given a set of samples in a ray, we initially predict the VF at each point of the
ray. We then define the weights of a sliding window of size M , where the size is an
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even number, as w = [w0, w1, ..., wM−1]. The sliding window and the predicted
VF are used to compute the weighted average cosine similarity associated with
each point. The smoothed cosine similarity of a point is computed as the weighted
average of the cosine similarities using multiple forward and backward neighbors
of the ray. Therefore, given a ray of N + 1 points r = [x0,x1, · · · ,xN ], we can
compute N averaged cosine similarities as:

  \cossim ^i(\ray ) = \sum _{j=0}^{M/2-1}[w_j \cos {(\vfFunction (\loc _i), \vfFunction (\loc _{i-j-1}))} + w_{j+M/2} \cos {(\vfFunction (\loc _i), \vfFunction (\loc _{i+j+1}))} ] \label {eq:ray_cos_sim} 




         (3)

For simplicity, in Eq. (3) we do not consider the boundary cases of computing
the weighted average cosine similarity of the first and last samples along rays.
However, note that the cosine similarity of the first and last points of the ray
is not smooth because the sliding window would go out of range. Additionally,
given N+1 points, we can only compute N cosine similarities since the last point
of the ray does not have a successor.

The effect of the weighted sliding window can be changed by modifying its
weights. We start with a uniform distribution where all the weights are equal
and sum up to 1. We introduce an annealing process to progressively add more
weight to the closest neighbors with the final objective to end with a one-hot
vector where all the weight is located at the closest next neighbor. Thanks to
this approach, the network can be easily optimized, while preserving the desired
sharpness during inference. The annealing process is depicted in Fig. 3b. This
process is linear and depends on the training epoch. Specifically, the weights
of the sliding window are computed at the beginning of every epoch using the
following equation:

  \widehat {w}_i = \dfrac {M}{2} \text {ReLU}\left (1 - \dfrac {n |i-M/2|}{N_{epochs}} \right ), \quad w_i = \dfrac {\widehat {w}_i}{|| \widehat {\slidingWindow } ||}.  










 




 (4)

Using sliding window cosine similarity, we redefine the surface density as a
transformation that maps a point in the ray r ∈ R(N+1)×3 to a scalar value,
σ : R(N+1)×3 × N≥0 → R≥0. Leveraging the cosine similarity, we define the
surface density as follows:

  \sigma (\ray , i) = \text {ReLU}(\alpha \Psi _{\mu , \beta }(-\cossim ^i(\ray )) - \alpha \Psi _{\mu , \beta }(\xi )). \label {eq:density}      (5)

where α, µ, β > 0 are learnable parameters and ξ is a cosine similarity threshold
value left as a hyperparameter. ReLU is the rectified linear unit and Ψµ,β repre-
sents the Cumulative Distribution Function (CDF) of the Laplace distribution.
µ denotes the Laplacian mean, while β is Laplacian "diversity" and α is a scaling
factor. Formally, the Laplacian CDF is defined as follows:

  \Psi _{\mu , \beta }(x) = \begin {cases} 1 - \exp {\left ( -\frac {|x - \mu |}{\beta } \right )} &\text {if } x > \mu \\ \exp {\left ( -\frac {|x - \mu |}{\beta } \right )} &\text {if } x \leq \mu . \end {cases} \label {eq:laplacian_cdf} 








  








  

(6)
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With this definition of the density function, we can accumulate the densities
and colors using numerical quadrature [34] to render the color and depth of the
pixel associated with the ray:

  C(\pixel ) = \sum _{i=1}^N T_i (1 - \exp {(-\sigma _i\delta _i)}) \radiance _i \label {eq:color_numerical_volume_rendering}\\ 




   (7)

  D(\pixel ) = \sum _{i=1}^N T_i (1 - \exp {(-\sigma _i\delta _i)}) t_i \label {eq:depth_numerical_volume_rendering} 




   (8)

where Ti = exp
(
−
∑i−1
j=1 σjδj

)
is the accumulated transmittance and δi =

ti+1 − ti is the distance between samples along a ray. Note that Eqs. (7) and (8)
can be seen as traditional alpha compositing with alpha values αi = 1−exp (σiδi).

3.3 Hierarchical Ray Sampling

Sampling rays densely in a uniform manner proves highly inefficient due to the
prevalence of free space and occluded regions along the ray, which do not con-
tribute significantly to volume rendering. To address this challenge, similarly to
prior works [16,25,34,50,51,56,59], we propose a hierarchical sampling strategy
to allocate samples selectively in regions likely to contain surfaces. Initially, we
sparsely sample Nc = 100 points along a ray and predict their corresponding
VFs. Given these predictions, we compute the surface density σ along the ray
and densely resample around its maximum. As shown in Fig. 3b bottom row, our
dense sampling approach involves uniformly sampling Nf points in a window of
size dsamples = 30cm centered at the point yielding maximum surface density
σ. The number of points Nf sampled during this step increases every ninc = 50
epochs using a fixed step size N inc

f = 5 until reaching a maximum Nmax
f = 100.

Consequently, after some epochs we make use of a total of Nc + Nmax
f = 200

points to render the predicted color C(p) and depth D(p). Note that while some
works optimize coarse and fine networks simultaneously to predict the surface
density [34,40], our approach employs a single network to predict the VF. Hierar-
chical sampling allows the network to progressively refine the 3D representation
of the scene in a coarse-to-fine manner.

3.4 Training

Our approach leverages a dual-MLP structure. First, fϕ : R3 → R3+256 predicts
the VF of the scene alongside a global geometry feature vector z ∈ R256. Here,
ϕ represents the network learnable parameters. Second, cψ : R3+3+3+256 → R3

approximates the radiance field color values based on a given spatial point,
viewing direction, VF, and global feature vector. Here, ψ represents the radiance
field network learnable parameters. Consequently, for a specific point on a ray
x and its viewing direction d , we can predict the VF as (v, z) = fϕ(x) and the
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radiance field as c = cψ(x,v,d, z). Our model also incorporates three learnable
parameters for the density function as described in Eq. (5), namely α, µ and β.

During training, a batch of pixels P and their corresponding rays are sampled
to minimize the difference between the rendered images Ĉ(p) and the reference
images C(p):

  \loss _c = \dfrac {1}{|\pixelBatch |} \sum _{\pixel \in \pixelBatch } || \widehat {C}(\pixel ) - C(\pixel ) ||_1 \label {eq:color_loss} 






   (9)

Learning the geometry of indoor scenes solely from images presents a challenge in
reconstructing accurate geometries, even in textured regions. To address this, we
enhance the learning of scene representation by introducing a depth consistency
loss similarly to [50, 59]. This loss compares the rendered depth, D̂(p), with a
reference depth, symbolized as D(p). Depending on the availability of data, the
depth D(p) can be derived from multi-view stereo methods [42, 43, 60] or by
monocular depth estimation [13,14].

  \loss _{depth} = \dfrac {1}{|\pixelBatch |} \sum _{\pixel \in \pixelBatch } || \widehat {D}(\pixel ) - D(\pixel ) ||_1 \label {eq:depth_loss} 






  (10)

In addition to the rendering losses, we add three regularization terms to
impose the known properties of VF. First, we impose that the VF has a unit
vector property by applying the unit norm loss Lnorm:

  \loss _{norm} = \dfrac {1}{N+1}\sum _{i=0}^{N} (||\vfFunction (\loc _i)||_2-1)^2 \label {eq:norm_loss} 


 




   (11)

Additionally, in object-centric scenes, the VF at outer, distant points resembles
a vector directed toward the center. Therefore, we incorporate a loss that guides
the VF for points outside the scene, denoted as Pext, to point towards the object’s
center, represented by cscene.

  \loss _{ext} = \dfrac {1}{|\pointsExterior |} \sum _{\loc \in \pointsExterior } \left |\left | \vfFunction (\loc ) - \dfrac {\mathbf {c}_{scene} - \loc }{|| \mathbf {c}_{scene} - \loc ||_2}\right |\right |_2 \label {eq:loss_exterior} 







  

 




(12)

Finally, considering that in indoor scenes, images are captured from within the
scene’s geometry, we introduce a loss function that guides points near the scene’s
center, represented as Pcen, to point outwards:

  \loss _{cen} = \dfrac {1}{|\pointsCenter |} \sum _{\loc \in \pointsCenter } \left |\left | \vfFunction (\loc ) - \dfrac {\loc - \mathbf {c}_{scene}}{|| \loc - \mathbf {c}_{scene} ||_2}\right |\right |_2 \label {eq:loss_center} 







 





(13)

The overall loss is defined as a weighted sum of the individual losses:

  \loss = w_c\loss _c + w_{norm}\loss _{norm} + w_{ext}\loss _{ext} + w_{depth}\loss _{depth} + w_{cen}\loss _{center} \label {eq:loss}           (14)

where wc, wnorm, wext, wdepth and wcen are hyperparameters.
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Table 1: Quantitative results. Our method outperforms all baselines in terms of the
averaged F-score and median Chamfer Distance. On novel view synthesis, VF-NeRF
outperforms all baselines on ScanNet, and renders high-quality images on Replica,
being second only to MonoSDF by a small margin. P stands for precision, R for recall
and F-1 for F1-score. Best result. Second best result.

Replica ScanNet
PSNR ↑ CD ↓ P ↑ R ↑ F-1 ↑ PSNR ↑ CD ↓ P ↑ R ↑ F-1 ↑

COLMAP [43] - - 0.760 0.403 0.527 - - 0.604 0.485 0.538
NeRF [34] - - 0.153 0.295 0.201 - - 0.085 0.166 0.112
UNISURF [37] - - 0.195 0.338 0.247 - - 0.298 0.335 0.315
NeuS [51] - - 0.524 0.465 0.493 - - 0.406 0.437 0.421
VolSDF [56] - - 0.317 0.442 0.369 - - 0.489 0.546 0.516
N-Angelo [25] 31.44 611 0.243 0.323 0.262 17.83 103 0.269 0.188 0.220
M-SDF [16] 27.48 5.6 0.723 0.856 0.779 20.78 1.45 0.778 0.694 0.730
NeuRIS [50] - - - - - 24.40 1.71 0.773 0.682 0.723
MonoSDF [59] 32.25 0.37 0.906 0.889 0.897 23.84 1.42 0.863 0.730 0.788

VF-NeRF 31.49 0.13 0.976 0.842 0.904 26.21 0.258 0.928 0.821 0.865

4 Experiments

Implementation details. Our method is developed using PyTorch [39] and
trained using the Adam optimizer [23]. The VF and color functions are designed
as MLPs consisting of 8 and 4 hidden layers, respectively. Positional encod-
ings [34] are used for the spatial positions x and viewing directions d to address
the challenge of learning high-frequency details of the scene. Furthermore, we
find that initializing the VF network by pretraining it to point toward the center
of the scene eases the training process. The learning rate is initialized at 5×10−4

and is decreased using an exponential decay approach [27]. The training process
spans 3000 epochs. Notably, weight annealing for the sliding window technique
is executed between the 700th and 1400th epochs. Each epoch’s iteration count
is equivalent to the dataset’s training image count, and 1024 rays are sampled
during each iteration. For each ray, we make use of our hierarchical sampling
strategy. Additionally, we use Truncated Signed Distance Function (TSDF) fu-
sion to extract the surface mesh from the predicted depth maps and images.
We set the following weights of the multi-objective loss function: wc = 1.0,
wnorm = 0.05, wext = wcen = 0.5, wdepth = 0.25. Regarding the density function
parameters, we set the cosine similarity threshold to ξ = −0.5 and initialize the
learnable parameters to µ = 0.7, β = 0.5 and α = 100.
Datasets. We test the performance on Replica [47] and ScanNet [9]. The Replica
dataset consists of 18 synthetic indoor scenes, where each scene contains a dense
ground truth mesh, and 2000 RGB and depth images. Similarly to MonoSDF [59],
we focus on only seven scenes from this dataset for comparison purposes. The
ScanNet dataset contains 16113 indoor scenes with 2.5 million views, with each
view containing RGB-D images. Additionally, a fused mesh is provided for each
scene. We select the four scenes from this dataset used by ManhattanSDF [16]
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Fig. 4: 3D reconstruction qualitative results. VF-NeRF outperforms the SOTA
in planar regions of the scenes such as walls and floors as well as in several details. We
highlight regions where VF-NeRF outperforms the other methods with yellow boxes.
We note that these include both planar and detailed regions.

and MonoSDF to evaluate our method. For replica, we sample 1 of every 20
posed images for training, while in Scannet we sample 1 of every 40.
Metrics. We evaluate following standard protocol [59]. For 3D surface recon-
struction, we focus on evaluating our method with median Chamfer distance
(CD) and F1-score [48] with a threshold of 5cm. We also provide the peak
signal-to-noise ratio (PSNR) to evaluate view synthesis. The detailed definitions
of these metrics are included in the supplementary material.
Baselines. We compare our method against the State of the Art (SOTA),
which use volume rendering for indoor scene reconstruction: ManhattanSDF [16],
MonoSDF [59], NeuRIS [50] and Neuralangelo [25]. We use Marching Cubes [32]
to extract the meshes rendered by the baselines.

4.1 Comparisons with baselines

3D reconstruction. We evaluate our method on the Replica and ScanNet
datasets. The qualitative results on Replica and ScanNet are illustrated in Fig. 4.
Quantitative results on both datasets are shown in Tab. 2. Additional detailed
qualitative and quantitative results are included in the supplementary mate-
rial. Our method outperforms volume rendering based benchmarks in terms of
F1-score and median CD on both datasets. Most interestingly, the gap in perfor-
mance is significantly higher in ScanNet, a more challenging dataset containing
noisy depth maps. The ability to perform extremely well on real depths/images
might be explained by the strong inductive bias offered by VF which allows it
to learn planar regions even in the presence of noisy data.
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Manhattan MonoSDF [59] VF-NeRF Ground
SDF [16] (Ours) Truth

Fig. 5: Novel view synthesis qualitative results. Our method renders accurate
images with high-frequency details. Compared to ManhattanSDF, our method is more
accurate and introduces less smoothness in both datasets. Additionally, VF-NeRF is
more effective than MonoSDF in preserving high frequency details (e.g. the blinds).
Interestingly, we observe that in the bottom example, VF-NeRF renders an image
that, at spots (e.g. the drawing on the wall), is sharper than the GT image which
suffered from motion blur.

Manhattan MonoSDF [59] VF-NeRF Ground
SDF [16] (Ours) Truth

Fig. 6: 3D reconstruction of planar regions. VF-NeRF represents planar surfaces
with higher accuracy and fewer artifacts compared to the SOTA. Besides planar regions,
note that high frequency details are still preserved in our method (see plant in second
row meshes).

The performance of Neuralangelo drops due to the lack of texture in indoor
scenes, since it only makes use of color images as supervision signal through-
out the optimization. ManhattanSDF can generally recover high-quality scenes,
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w\o hierarchical w\o Ldepth VF-NeRF Ground
sampling (Ours) Truth

Fig. 7: Ablations. Removing the hierarchical sampling generates holes in the recon-
structed surfaces and artifacts (see table in the meshes). Our method without Ldepth

is less accurate, as most regions of the scene are low-textured. Nonetheless, it still cap-
tures the overall scene coarse geometry.

although it struggles in some planar areas due to its dependency on semantic
segmentation masks. MonoSDF generally achieves impressive results, although
several artifacts appear in some planar regions. In contrast, our method can re-
cover planar surfaces with great fidelity as well as many fine details (the flowers
and picture on the wall or the trash bins in Fig. 4). The capacity of our method
to represent planar surfaces compared to the baselines is depicted in Fig. 6.
Novel view synthesis. We present qualitative and quantitative novel view syn-
thesis comparisons in Fig. 5 and Tab. 2. VF-NeRF generally renders high-quality
views that preserve high-frequency details and outperforms ManhattanSDF and
Neuralangelo in terms of PSNR in both datasets. Additionally, VF-NeRF outper-
forms all baselines in ScanNet, a more realistic setup with real data, and comes
second to MonoSDF in Replica by a small margin. More qualitative results can
be found in the supplementary material.

4.2 Ablations

Loss terms. We analyze the impact of different loss terms on the surface repre-
sentation and provide quantitative results. Specifically, we remove the following
losses and study their effects: center and exterior supervision Lcenter, Lext, unit
norm Lnorm and depth Ldepth. We demonstrate that removing these losses de-
creases the performance of our method, as presented in Tab. 2. Additionally,
removing the depth loss significantly decreases the performance, although the
coarse geometry is still preserved, as demonstrated in Fig. 7 since most of the
surfaces of the scene do not have enough texture.
Sliding window annealing and initialization. Tab. 2 presents the results
of ablating the sliding window cosine similarity and the custom VF network
initialization. In the case of the sliding window annealing, we use cosine similarity
with the next point of the ray instead of the weighted average. This is the same as
just using the sliding window as a one-hot vector where all the weight is located
at the closest next neighbor. The results show that both elements enhance the
surface reconstruction.
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Table 2: Ablations quantitative results. Removing loss terms, sliding window
annealing, the VF network initialization or the hierarchical sampling decreases our
method’s performance.

Precision↑ Recall↑ F1-score↑ CD (mm)↓

w\o annealing 0.964 0.809 0.880 0.10
w\o initialization 0.901 0.793 0.844 0.13
Uniform sampling 0.942 0.818 0.876 0.14
w\o Lcenter,Lext 0.952 0.804 0.872 0.11
w\o Lnorm 0.928 0.801 0.860 0.11
w\o Ldepth 0.421 0.263 0.324 63.5
VF-NeRF 0.986 0.817 0.894 0.09

Sampling. We investigate the importance of our sampling strategy introduced
in Sec. 3.3. We showcase the results achieved when using only uniform sampling
in Tab. 2. As expected, we find that using a hierarchical sampling strategy
enhances the performance of our method. Additionally, we find that removing the
hierarchical sampling and just using uniform sampling generates many artifacts
as depicted in Fig. 7.

4.3 Limitations

One limitation of our method is its inherent smoothing bias, which sometimes
makes it hard to represent high-frequency details by self-supervised learning.
Although our method is generally capable of representing high-frequency details,
it struggles in some cases. Additionally, VF-NeRF assumes homogeneous density
with three hyperparameters α, µ, β. Future works could explore using different
hyperparameters depending on the geometric characteristics.

5 Conclusion

In this work, we presented VF-NeRF, a novel NERF approach for multiview
surface reconstruction, utilizing Vector Fields (VFs) to encapsulate the scene’s
geometry. By transforming the VF, we can represent the volume density of each
point in the scene. The key idea is to learn the VF of the scene through volume
rendering. Additionally, we proposed a hierarchical sampling approach which
enables us to sample more densely near surfaces, improving the efficiency and
precision of our method. The experiments demonstrate the performance of our
method to reconstruct indoor scenes, outperforming state-of-the-art methods on
indoor datasets. Furthermore, our method is capable of rendering novel views
that preserve high-frequency details and outperforms several baselines in Replica
and ScanNet. Finally, we showcased the effectiveness of our method to recon-
struct planar surfaces, while preserving details present in the scenes.
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Fig. 1: Networks’ architecture. The VF network takes a point in space x as input
and applies positional encoding (PE(·)) before feeding it to the MLP. The color network
takes the spatial point, the predicted VF, the feature vector z, and the viewing direction
d with positional encoding as inputs to predict the color.

A Detailed networks’ architecture

We present an illustration of the VF and color networks in Figure 1. As the first
MLP, the VF network predicts the VF at a location in space x and a feature
vector z that is later used to predict the color at that point. The second smaller
MLP is the color network. It takes as input the VF, the position in space x,
the direction d1 and the predicted feature vector z. As explained in the main
paper, the two networks are applied in a rendering pipeline similar to [34] and
optimized jointly.

B Metrics

To evaluate the method, we use the standard metrics for the task [16,25,56,59].
To evaluate the reconstruction accuracy, we use the precision, recall and F1-
score together with the Chamfer Distance (CD). Given that the CD is sensitive
to outliers, we report both its mean and median value. To evaluate the render-
ing capability of the network, we use the standard Peak Signal-to-Noise Ratio
(PSNR). The definitions of metrics are reported in Table 1.

C Baselines

We use the official Manhattan-SDF 2, MonoSDF 3 and NeuRIS 4 implementa-
tions as baselines. We adapted the Replica dataset to use it in Manhattan-SDF,
1 Positional encoding PE(·) is applied to it
2 https://github.com/zju3dv/manhattan_sdf
3 https://github.com/autonomousvision/monosdf
4 https://github.com/jiepengwang/NeuRIS

https://github.com/zju3dv/manhattan_sdf
https://github.com/autonomousvision/monosdf
https://github.com/jiepengwang/NeuRIS
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Table 1: Metric definitions. P and P ∗ are the point clouds sampled from the
rendered and ground truth meshes. M and N are the height and weight of the images.
C and Ĉ are the ground truth and rendered images.

Metric Definition

Precision meanp∈P (minp∗∈P∗ ||p− p∗|| < 0.05)

Recall meanp∗∈P∗(minp∈P ||p− p∗|| < 0.05)

F1-score
2 · Precision · Recall
Precision + Recall

CD
∑

p∈P minp∗∈P∗ ||p∗ − p||22+∑
p∗∈P∗ minp∈P ||p∗ − p||22

MSE 1
MN

∑M−1
i=0

∑N−1
j=0 ||C(i, j)− Ĉ(i, j)||22

PSNR −10 · log10(MSE)

while unfortunately NeuRIS does not support it. Additionally, we use SDFStu-
dio’s [58] implementation 5 of Neuralangelo.

D 3D reconstruction quantitative results

We quantitatively evaluate the capacity of our method to reconstruct Replica and
ScanNet scenes and compare it against state-of-the-art neural volume rendering
methods. We present these quantitative results for each scene in Table 2. VF-
NeRF is among the 2 best methods on every Replica scene and the best method
on every ScanNet scene in terms of F-score. Additionally, we observe that our
method outperforms by a large margin all the others on the median CD and is
among the best in mean CD. We note that median CD is more representative
of the overall performance of the methods due to the high sensitivity to outliers
of the mean CD. The large difference between mean CD and median CD (over
2 orders of magnitude in many cases) is caused by the overall poor performance
of every method in representing the ceiling of the rooms. This is mainly due to
the lack of observations that actually include the ceiling.

E 3D reconstruction qualitative results

We provide qualitative results for each scene of Replica and ScanNet in Figure 2.
We include visualizations of state-of-the-art 3D reconstruction methods as com-
parisons. VF-NeRF always achieves very accurate results and avoids generating
artifacts on the walls, something that often happens in SDF-based methods.

5 https://github.com/autonomousvision/sdfstudio

https://github.com/autonomousvision/sdfstudio
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F Novel view synthesis qualitative results

Figure 3 presents qualitative comparisons of novel view synthesis for each scene
on Replica and Scannet. Tab. 3 showcases the quantitative results for each indi-
vidual scene in both datasets.
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Table 2: 3D reconstruction quantitative results of individual scenes on
Replica and ScanNet. Best result. Second best result. Note Neuralangelo fails
to reconstruct a valid geometry for scene 0580 of ScanNet.

Replica ScanNet
r0 r1 r2 o0 o1 o3 o4 Mean 0050 0084 0580 0616 Mean

Precision↑

M-SDF 0.674 0.867 0.746 0.703 0.382 0.905 0.784 0.723 0.819 0.892 0.685 0.714 0.778
N-Angelo 0.265 0.458 0.176 0.261 0.269 0.122 0.153 0.243 0.359 - 0.310 0.138 0.269
MonoSDF 0.924 0.959 0.944 0.778 0.883 0.915 0.941 0.906 0.857 0.928 0.814 0.854 0.863
NeuRIS - - - - - - - - 0.822 0.776 0.740 0.755 0.773

VF-NeRF 0.974 0.988 0.981 0.986 0.992 0.973 0.940 0.976 0.942 0.927 0.949 0.893 0.928

Recall↑

M-SDF 0.924 0.926 0.854 0.819 0.691 0.882 0.899 0.856 0.662 0.854 0.735 0.523 0.694
N-Angelo 0.338 0.370 0.279 0.417 0.207 0.482 0.166 0.323 0.233 - 0.262 0.070 0.188
MonoSDF 0.964 0.912 0.934 0.802 0.829 0.878 0.904 0.889 0.660 0.896 0.725 0.637 0.730
NeuRIS - - - - - - - - 0.699 0.741 0.719 0.568 0.682

VF-NeRF 0.873 0.875 0.848 0.817 0.784 0.825 0.872 0.842 0.779 0.920 0.888 0.696 0.821

F-score↑

M-SDF 0.778 0.896 0.796 0.757 0.492 0.893 0.838 0.779 0.732 0.873 0.709 0.604 0.730
N-Angelo 0.297 0.410 0.216 0.321 0.234 0.195 0.159 0.262 0.283 - 0.284 0.093 0.220
MonoSDF 0.944 0.935 0.939 0.790 0.855 0.896 0.922 0.897 0.745 0.911 0.767 0.730 0.788
NeuRIS - - - - - - - - 0.755 0.758 0.729 0.648 0.723

VF-NeRF 0.921 0.928 0.910 0.894 0.876 0.893 0.905 0.904 0.853 0.923 0.918 0.765 0.865

Mean Chamfer Distance (mm)↓

M-SDF 494 65.2 392 77.5 1266 7.68 149 350 11.0 9.18 23.1 47.9 22.80
N-Angelo 1113 67.9 1107 317 280 5464 1002 1336 95.6 - 196 523 272
MonoSDF 2.72 3.44 2.95 9.23 12.0 4.50 2.49 5.33 12.1 5.80 12.6 40.8 17.83
NeuRIS - - - - - - - - 11.3 10.6 24.6 34.3 20.2

VF-NeRF 8.59 6.84 15.2 44.2 57.0 7.34 6.50 20.81 8.37 5.14 7.34 55.2 19.0

Median Chamfer Distance (mm)↓

M-SDF 0.87 0.34 0.91 0.42 35.6 0.41 0.63 5.60 1.25 1.09 1.76 2.71 1.45
N-Angelo 39.0 12.5 215 39.0 44.5 3754 174 611 28.8 - 29.2 251 103
MonoSDF 0.21 0.23 0.46 0.82 0.34 0.33 0.22 0.37 2.13 0.90 1.45 1.19 1.42
NeuRIS - - - - - - - - 0.57 2.35 1.48 2.42 1.71

VF-NeRF 0.19 0.09 0.15 0.09 0.05 0.21 0.14 0.13 0.32 0.07 0.18 0.46 0.258

Table 3: Novel view synthesis quantitative results. Best result. Second best
result.

PSNR↑
Replica ScanNet

r0 r1 r2 o0 o1 o3 o4 Mean 0050 0084 0580 0616 Mean

M-SDF 25.06 26.38 29.36 28.87 26.39 28.35 27.92 27.48 22.44 18.92 22.87 18.90 20.78
N-Angelo 28.22 30.45 29.59 36.02 36.15 29.54 30.14 31.44 17.48 18.66 18.40 16.78 17.83
MonoSDF 27.91 30.29 31.16 36.26 36.80 30.70 32.63 32.25 17.61 33.11 27.16 17.46 23.84
NeuRIS - - - - - - - - 23.29 27.63 23.56 23.14 24.41

VF-NeRF 27.05 31.23 28.90 36.72 38.09 27.57 29.89 31.49 25.60 28.43 25.64 25.20 26.21
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Fig. 2: 3D reconstruction qualitative results.
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Fig. 3: Novel view synthesis qualitative results.
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