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Abstract

This semester project presents a method to automatically tune the weights of the cost function
of a Model Predictive Controller used to control a Formula Student Driverless car. The approach
of this project relies on constrained and unconstrained Bayesian Optimization to acquire new sets
of weights that are continuously tried in simulation to test their performance in terms of lap
time. The algorithm keeps running the autonomous system pipeline in a simulated environment
and changes the Model Predictive Controller weights according to the Bayesian Optimization
proposals. Performance metrics are acquired at the end of the simulation and are used to model
the performance function used in Bayesian Optimization. Finally, constraints are introduced in the
optimization to also consider performance-based constraints. These constraints will allow testing
the algorithm online in the real platform with safety guarantees.
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Nomenclature

Mathematical Symbols
αf l Front left tyre slip angle

αf r Front right tyre slip angle

αrl Rear left tyre slip angle

αrr Rear right tyre slip angle

β Exploration vs. exploitation trade-off parameter

Θ Cost function weights data-set

θ Cost function weights vector

faqpθq Acquisition function

fdp¨, ¨q 4 wheel model of the dynamics of the car

fLCBpθq Lower Confidence Bounds function

fRKp¨, ¨q Runge-Kutta 2nd order integrator

Q State weight diagonal matrix

R Controls weight diagonal matrix

S2 Quadratic slack term weight diagonal matrix

Slin Linear slack term weight vector

S Matrix of predicted slacks inside the horizon

s Slack variable vector

U Matrix of predicted controls inside the horizon

u Car controls vector

X Matrix of predicted states inside the horizon

x Car state vector

yt lap-time samples data-set at time t

9s Progress rate along the reference trajectory

µpθq Mean function of a Gaussian Process

σpθq Variance function of a Gaussian Process

τ lap-time threshold

v



f̃pθq Simulation lap-time disrupted with Gaussian noise

cellipse Exponential additive weight on tyre ellipse constraints

ctrack Exponential additive weight on track constraints

cv Exponential additive weight on longitudinal velocity constraints

fpθq Lap-time black-box function

fopt Optimal lap-time

Gt Expanders set at time t

hellipsep¨, ¨, ¨q Tyre ellipse constraint

htrackp¨, ¨, ¨q Track constraint

hvp¨, ¨, ¨q Longitudinal velocity constraint

kpθ, θ
1

q Kernel function of a Gaussian Process

kellipse Exponential multiplicative weight on tyre ellipse constraints

ktrack Exponential multiplicative weight on track constraints

kv Exponential multiplicative weight on longitudinal velocity constraints

lpθq Lower confidence bound

Mt Maximizers set at time t

Rptq Cumulative regret over time at time t

rptq Instant regret at time t

St Safe set at time t

Ts MPC integration time-step

upθq Upper confidence bound

wαf
Weight on front tyres slip angle

wαr
Weight on rear tyres slip angle

w 9s Weight on progress rate
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Acronyms

AMZ Academic Motorsports Association of Zurich. 3

CEI Constrained Expected Improvement. 7

FSG Formula Student Germany. 3

KPI Key Performance Indicator. 4

LCB Lower Confidence Bounds. 12

LQR Linear Quadratic Regulator. 7

MPC Model Predictive Control. 3

PID Proportional Integral Derivative. 9

ROS Robot Operating System. 15

1



2 Acronyms



Chapter 1

Introduction

This semester project presents an automatic tuning method based on Bayesian Optimization to
tune the weights of the cost function of a Model Predictive Control (MPC) developed to control
Academic Motorsports Association of Zurich (AMZ)’s Formula Student Driverless Car: Bernina.
This chapter presents a brief description of the project platform, its objectives, and the background
of this project.

1.1 Formula Student Driverless
Formula Student is a university student international engineering competition whose purpose is to
provide a testing ground to design and build single-seat, electric power-train racing cars. ETH’s
Formula Student club, AMZ, participated in the 2022 competition with its new prototype Bernina
shown in Figure 1.1.

Figure 1.1: Bernina: AMZ’s Formula Student 2022 prototype racing in Formula Student Germany
(FSG)’s Skidpad.

The competition is divided into static and dynamic events. In the static events, teams present
their engineering design process, as well as the cost of the car and their business plan. In dynamic
events, teams compete in different manual and driverless disciplines. Two of these disciplines are
the driverless skidpad and trackdrive, which are the target of this project.
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4 1.2. Motivation and goals

In the driverless skidpad, the race car drives autonomously on an 8-shaped track for four laps (two
laps in each circle). In trackdrive, the car races autonomously for ten laps on a track that has been
previously mapped so that the global reference trajectory is known. Tracks are delimited by blue,
yellow, and orange cones and are, on average, four meters wide. These disciplines are time trial
based, therefore the goal is to achieve the lowest possible lap time without knocking down cones
because each knocked down cone adds a penalty of 2 seconds in trackdrive and 0.2 seconds in the
skidpad.

1.2 Motivation and goals
The driverless skidpad and trackdrive disciplines offer the best opportunities to put the car at its
physical limits. Since the optimal race line is known, the car only needs to localize itself inside the
previously mapped environment and continuously compute the desired control commands using a
curvilinear MPC. Therefore, it becomes critical to fine-tune the controller parameters to achieve
the best performance by pushing the car to its limits in a controlled manner.

In past seasons, manual tuning, aided by a Key Performance Indicator (KPI), was the only available
option to obtain a successful set of parameters. However, two main issues arise with this option.
The first one is the amount of time and resources needed to achieve a desired set of parameters.
Control engineers had to allocate a considerable amount of time to first tune the MPC in simulation
and, afterward, test and tune it with the race car. The second issue comes with the sub-optimal
solutions of hand-tuning since hand-tuning is usually driven by intuition and requires a certain
degree of previous experience.

Due to a lack of resources and testing time, along with the motivation to reduce the burden of many
hours of hand-tuning, an automatic tuning approach is proposed in this project. Therefore, this
project presents an automatic method to tune the MPC cost function weights with the assistance
of a high-fidelity simulator to run the autonomous pipeline and acquire samples of the penalty
function, which is the lap time in this project. The development of this project aims to satisfy the
following goals:

• To converge to an optimal set of parameters that considerably reduce the lap time com-
pared to the baseline. The algorithm must be able to tune any combination of cost function
weights, including all of them. The parameters must converge to a certain value without
major fluctuations.

• To avoid knocking down cones on the track. Besides incurring a time penalty, knocking down
cones can lead to unsafe situations for the integrity of the car, the environment, and the
testing team. Therefore, knocking down cones should be avoided.

• To provide a method to tune a reduced amount of parameters in an online manner using the
race car as a platform instead of the simulation. A performance constraint must be satisfied
to always keep the lap time lower than a certain threshold to reduce the testing time.

1.3 Problem statement
The main objective of this project is to tune the cost function weights of the MPC used for
known tracks taking into account a performance constraint. This problem can be formulated as
the optimization problem of Equation (1.1), where θ represents the parameter vector that includes
the cost function weights that need to be tuned, and it can be solved with Bayesian Optimization.
The MPC also depends on the parameter vector and can be seen as the optimization problem
shown in equation (1.2). We assume that J is a function of the set of parameters θ and initial
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state x0 which can have some added noise. Similarly, MPC provides a unique policy πpθ, x0q which
can also have added noise. This added noise comes from the MPC solver.

Note that the functions and constraints that are optimized by Bayesian Optimization are different
than the objective function of the MPC. Furthermore, to be able to use Bayesian Optimization, it
is assumed that every set of parameters θi will be mapped to only one value fpθiq which can have
some Gaussian noise. It is also assumed that it cannot be possible that the same set of parameters
θi can produce very different values when evaluated with the black-box function. Furthermore, the
function fpθq needs to satisfy a regularity condition. Finally, we use the continuity argument that
two close enough policies produced by two different θ will produce close enough lap times.

θ˚
“ arg min

θ
fpθq

s.t. fpθq ď τ
(1.1)

min
X,U

J pX, U , θq

s.t. xk`1 “ fpxk, ukq

xk P X
uk P U

(1.2)

The MPC cost function J pX, U , S, θq is formulated to maximize the progress rate along the
reference trajectory, but it also includes control input smoothing terms as well as reference state
tracking terms, slip angle penalties and a cost on the slack variables. Furthermore, the constraints
are penalized in the cost function using exponential functions to penalize track boundaries, tire
ellipse, and terminal velocity constraint violations. The cost function consists of two main costs:
terms at every stage of the prediction horizon and a terminal cost. These costs are presented in
Equations (1.3) and (1.4), respectively. Finally, the whole MPC formulation is shown in Equation
(1.5).

Jk “ ´ w 9s 9sk
loomoon

progress rate

` xT
k Qxk

looomooon

state cost

` uT
k Ruk

looomooon

controls cost

` wαf
pαfrk

` αflk
q2 ` wαr pαrrk

` αrlk
q2

looooooooooooooooooooooooomooooooooooooooooooooooooon

slip angle cost

` Slinsk ` sT
k S2sk

loooooooooomoooooooooon

slack cost

` ectrack`ktrackhtrackpxk,uk,skq
loooooooooooooooomoooooooooooooooon

track constraints cost

` ecv`kvhvpxk,uk,skq
loooooooooomoooooooooon

terminal velocity constraint cost

`

4
ÿ

i“1
eci

ellipse`ki
ellipsehi

ellipsepxk,uk,skq

looooooooooooooooooooomooooooooooooooooooooon

ellipse constraints costs

(1.3)

JN “ ´wN
9s 9sN ` xT

N QN xN ` uT
N RN uN ` wN

αf
pαfrN

` αflN
q2 ` wN

αr
pαrrN

` αrlN
q2

`SlinN sN ` sT
N S2N sN ` ectrackN

`ktrackN
htrackpxk,uk,skq ` ecvN

`kvN
hvpxk,uk,skq

`

4
ÿ

i“1
eci

ellipseN
`ki

ellipseN
hi

ellipsepxk,uk,skq

(1.4)

min
X,U ,S

JN `

N´1
ÿ

k“1
Jk

s.t. xk`1 “ fRKpfdpxk, ukq, Tsq

xk P X
uk P U

(1.5)
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where fRKp¨q is the Runge-Kutta integrator, fdp¨q is the car model and Ts is the time integration
step.

From the cost function terms formulated in Equations (1.3) and (1.4) we can extract the parameter
vector θ. The parameter vector can include any selection of cost function weights, for instance,
Equation (1.6) includes all the cost function weights. The Bayesian Optimizer goal is to obtain the
optimal set of parameters θ˚ that minimize the underlying black-box function fpθq and satisfy the
performance constraint on the black-box function, as presented in Equation (1.1).

θ “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

w 9s

diagpQq

diagpRq

wαf

wαr

diagpQN q

diagpRN q

wN
αf

wN
αr

diagpSlinq

diagpS2q

diagpSlinN q

diagpS2N q

ctrack

ktrack

cellipse

kellipse

cv

kv

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(1.6)

In order to perform the optimization and tune the weights, the Bayesian Optimization module
needs to communicate with the MPC as well as with the simulator, the rest of the modules of
the pipeline are of no interest to the Bayesian Optimizer. Figure 1.2 presents AMZ’s Autonomous
Systems pipeline, where the Bayesian Optimization tuning is represented as Autotuner on FSSim.
The Autotuner communicates with the MPC module, denoted as High-Level Control, and with the
Simulation, denoted as FSSim (Formula Student Simulator).
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Figure 1.2: Bernina’s Autonomous System Pipeline

1.4 Related work
Constrained Bayesian Optimization has been a very active field of research in the past years and,
therefore, a considerable amount of literature is available. In this section, the most relevant liter-
ature about constrained Bayesian Optimization for controller tuning and Bayesian Optimization
for autonomous racing is reviewed.

In the context of Autonomous Racing, the authors of [1] present a method to tune the cost function
weights of an MPC. Furthermore, they provide a method to learn the residual error of the model
using Bayesian Linear Regression and they include context in the Bayesian Optimization. However,
this work does not include constraints in the optimization formulation.

In [2] the authors present SafeOpt, an approach capable of optimizing a black-box function using
Bayesian Optimization while satisfying a constraint on the surrogate model with a high proba-
bility. They achieved it by leveraging the properties of Gaussian Processes and making regularity
assumptions on the black-box function. The authors of [3] extend SafeOpt by decoupling the ob-
jective function and constraints, as well as introducing multiple constraints into the problem. They
apply their method to tune two parameters of a Linear Quadratic Regulator (LQR) to control
the x position of a Quadrator. These two papers focus on optimizing simple problems or partially
tuning a decoupled controller, whilst this project aims to extend these papers to tune a much more
complex, completely coupled controller.

In [4] the authors propose to use Constrained Expected Improvement (CEI), an acquisition function
presented in [5], to include constraints in the optimization of MPC parameters. However, they only
tune the parameters of a simplified model and compare it to the real model that they use to run
the simulation loop. Furthermore, using CEI as an acquisition function does not guarantee that
the constraints will be satisfied and allows for violations of these.
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Chapter 2

Methodology

Within the frame of hyper-parameter and controller parameters tuning, Bayesian Optimization
arises as one of the preferred methods due to its low computational cost, its capability of repre-
senting nonlinear utility functions, and its successful performance in many black-box optimization
tasks. However, the majority of the existing literature focuses on tuning simple controllers such as
Proportional Integral Derivative (PID) or tuning just a small set of parameters of the MPC. This
section aims to provide the formulation of the Bayesian Optimization approach used to tune any
combination of MPC cost function weights, as well as to introduce a performance constraint in
terms of lap time. Furthermore, the implementation details are provided at the end of the section.

2.1 Formulation
Bayesian Optimization consists of the sequential use of the Bayes Theorem to optimize continuous
black-box functions, which are typically expensive to evaluate, without making any assumptions on
their form (except for regularity and continuity). As the objective function is unknown, Bayesian
Optimization uses a prior model to model the function and once it starts collecting data about
the utility function, it keeps computing and updating the posterior of the model. Therefore, we
need an "oracle" that can provide noisy evaluations of the objective function. Furthermore, the
approach needs to make use of function modeling to model the black-box and be able to acquire
new proposals of parameters. Finally, constraints on the optimization problem are introduced to
provide performance guarantees for the system.

2.1.1 Bayesian Optimization workflow
The workflow of Bayesian Optimization consists of five different phases, as presented in the diagram
of Figure 2.1, which consist of acquiring a new sample of the black-box via the "oracle", adding
the sample to the data set, updating the posterior of the black-box’s surrogate model, performing
the optimization over the black-box surrogate model and acquiring a new proposal of parameters.
Figure 2.2 presents the pipeline of this project, which contains the five different phases mentioned
above. AMZ’s simulator FSSim is used to act as the "oracle" and, given a set of cost function weights
of the MPC, it provides information about the lap time achieved. Furthermore, the simulator
interface keeps track of the number of knocked-down cones as well as the deviation of the reference
trajectory.

The algorithm starts by trying a default set of parameters using the simulator. The simulation
interface provides a lap time that includes the penalties of the knocked cones or deviation of the
reference trajectory. This lap time sample is sent to the Bayesian Optimizer, which uses it to update
the black-box surrogate model and consecutively perform the optimization to acquire a new set

9



10 2.1. Formulation

Figure 2.1: Bayesian Optimization diagram.

of parameters. This new set of parameters is sent to the MPC via the MPC Interface and a new
simulation starts. The process is iterative and runs for a certain number of iterations defined by
the user. At the end of the optimization, two sets of parameters are proposed as the optimal: the
parameters that provided the best lap time sample and the parameters that minimize the mean
of the surrogate model. These tow sets are again tried in simulation to evaluate their performance
ans select the best one.

In order to be able to perform the optimization, an approximate model of the utility function and
a procedure to optimize it are needed. This can be achieved via surrogate models and acquisition
functions, which are introduced in the following sections.

2.1.2 Utility function surrogate model
Bayesian optimization uses surrogate models to place a belief on a black-box utility function fpθq

and update it with the noisy samples provided by the "oracle". In the case of this project, the
surrogate function models the lap time provided by the simulator. Note that this lap time is
perturbed by the noise of the perception and car actuators, which in turn are modeled in the
simulator. We assume that the lap time samples are perturbed by i.i.d. Gaussian noise, thus we
have that the sample at time t is f̃tpθtq “ fpθq ` ϵt, where ϵt „ Np0, σ2q. These samples are saved
in the data-sets yt “ rf̃pθ1q1, . . . , f̃pθtqts and Θt “ rθ1, . . . , θts.

Machine Learning is a powerful tool that provides different methods that can be used as surrogate
models such as neural networks, nonlinear regression, or Gaussian Processes. In the Bayesian
Optimization literature, Gaussian Processes are the most popular method to use as surrogate
models due to their ability to model a wide variety of continuous nonlinear functions, their sample
efficiency characteristic even in sequential approaches, their ability to model epistemic and aleatoric
uncertainty and the possibility to derive high probability confidence bounds when the system is well
calibrated. This last characteristic of Gaussian Processes becomes very important in the context of
Bayesian Optimization, as it means that a new sample will lie within the model confidence bounds
with a very high probability, as shown in Equation (2.1).

Pr|µtpθq ´ fpθq| ď βtpδqσtpθq @ t, θ P Ds ě 1 ´ δ (2.1)
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Figure 2.2: Bayesian Optimization for Autonomous Racing pipeline.

where µtpθq and σtpθq are the mean and the variance of the Gaussian Process at time t, βt is a
parameter that models the confidence bounds, D is the domain of the parameters and δ is a low
probability (δ P r0, 1s).

In this project, Gaussian Processes are chosen as the surrogate models of the lap time, f „

GPpµpθq, kpθ, θ
1

qq. The model assumes a zero mean prior and uses the lap time samples to compute
its posterior. Similarly, a kernel kpθ, θ

1

q is defined to model the covariance of the Gaussian Process.
Equations (2.2) and (2.3) present the posterior calculation of the mean and kernel, respectively,
given their prior and the new sample. A Matérn 5/2 kernel, Equation (2.4), is used in this project
due to its ability to represent non-smooth nonlinear functions. Furthermore, due to the smoothess
of the Matérn kernel, we can inherently assumes that f is L-Lipschitz continuous with respect to
some metric d on D. This is a necessary condition to use the constrained Bayesian Optimization
method presented in [2].

µtpθq “ kT
t pθqpKt ` Itσ

2q´1yt (2.2)

ktpθ, θ
1

q “ ktpθ, θ
1

q ´ kT
t pθqpKt ` Itσ

2q´1ktpθ
1

q (2.3)

kpθi, θjq “
1

Γpνq2ν´1 p

?
2ν

l
dpθi, θjqqνKνp

?
2ν

l
dpθi, θjqq (2.4)

In Equations (2.4), (2.2), and (2.3) ν “ 5{2, dpθi, θjq is the euclidean distance between two
parameter vectors, Kνp¨q is a modified Bessel function, Γp¨q is the gamma function, l is the length-
scale of the kernel, ktpθq “ rkpθ1, θq, . . . , kpθt, θqsT , and Kt is the kernel matrix rkpθ, θ

1

qs
θ,θ

1
PD

.
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Figure 2.3 provides a visual representation of a 1-D Gaussian Process, where the samples, the
mean, and the confidence bounds that represent the uncertainty are shown. It is worth noting that
the uncertainty is lower in regions where more data is available and it grows in regions where there
is no data.

Figure 2.3: 1-D Gaussian Process surrogate model example. Uncertainty grows in regions of the
parameter space where the amount of collected samples is low.

2.1.3 Acquisition function
An acquisition function models how the parameter space will be explored during the sequential
optimization. This function models the exploration vs. exploitation trade-off to determine which
areas of the parameter space are worth exploring and exploiting. Hence, the acquisition function
increases in regions where the surrogate model fpθq is optimal and in areas that have not been
explored. Ideally, the acquisition function should balance being high at uncertain and optimal
regions. In our formulation we want the contrary, we want the acquisition function to provide low
values in optimal and unexplored areas and minimize over it. Therefore, the optimization problem
follows Equation (2.5).

θp “ arg min
θ

faqpθq (2.5)

where faqpθq denotes the acquisition function.

There are many acquisition functions in the Bayesian Optimization literature, however, in this
project, we focus on the Lower Confidence Bounds (LCB) acquisition function and an extension
of it to introduce the performance constraint, SafeOpt [2], which is described in section 2.1.4.
Although different acquisition functions were studied and tested, such as Expected Improvement
and Constrained Expected Improvement [5], LCB and SafeOpt showed significantly better results
compared to the other methods.

The LCB acquisition function follows Equation (2.6), which is the mean of the utility function
surrogate model minus a trade-off parameter, β, times the variance of the surrogate model.

fLCBpθq “ µpθq ´ βσpθq (2.6)
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Therefore, this acquisition function potentiates zones in the parameter space where the mean of
the surrogate model is low, which are potential optimal points, and zones where the variance is
high, which are unexplored. The parameter β controls this exploration vs. exploitation trade-off,
as if β is large (between 1.5 and 3) the optimization will tend to explore more the parameter space.
For instance, Figure 2.4 presents an example of optimizing the Gaussian Process using the LCB as
an acquisition function and a value for β of 1.95. This value was empirically chosen, as it proved
to perfrom well in the 1-D and 2-D cases.

Figure 2.4: Gaussian Process surrogate model example. The red cross denotes the optimal point
when using the Lower Confidence Bounds as an acquisition function and β “ 1.95.

2.1.4 Constrained Bayesian Optimization
Unconstrained Bayesian Optimization is a very useful tool to tune controller parameters in simu-
lated environments where the agent (an autonomous racing car in this project) is allowed to use
parameters that can lead to a decrease in performance. In future iterations, Bayesian Optimization
will avoid the use of these parameters, as they lead to poor performance. However, there will still
exist a risk that the optimization explores regions of the parameter space that can again lead to a
decrease in performance.

In order to provide performance guarantees at all times, constraints need to be present in the
optimization process. In this project, the approach presented in [2], called SafeOpt, is followed to
introduce constraints on the surrogate model. Thus, the optimization problem becomes the one
shown in Equation (2.7). Note that this algorithm tries to find the maximum of the surrogate
model, therefore we need to multiply by ´1 the lap time samples used to train the model so that
we can find the parameters that minimize the lap time.

θ˚
“ arg max

θ
fpθq

s.t. fpθq ě τ
(2.7)

The authors of [2] present an approach capable of finding optimal points while satisfying the safety
constraint with high probability at all times. This algorithm solves the optimization problem of
equation (2.8), which greedily selects the point of maximum uncertainty that is within the so-called
maximizers (Mt) and expanders (Gt) sets. To understand the maximizers and expanders sets, first,
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the safe set (St) needs to be defined. First, the algorithm assumes that the parameter space is
discretized. Then, the safe set contains all the discrete points of the parameter space that satisfy
the constraint. The safe set is initialized as S0 and contains the initial point of the optimization,
which must satisfy the constraints. We make use of the L-Lipschitz continuity assumption to ensure
that the points nearby are safe even under the worst realization of the surrogate model. Only the
points that satisfy this assumption are included in the safe set.

θt “ arg max
θPMt

Ť

Gt

wtpθq

(2.8)

In Equation (2.8) wtpθq “ utpθq ´ ltpθq, where utpθq and ltpθq are the upper and lower confidence
bounds of the surrogate model, respectively. These confidence bounds are defined as utpθq “

µt´1pθq ` βtσt´1pθq and ltpθq “ µt´1pθq ´ βtσt´1pθq.

As mentioned before, the Mt set contains the possible maximizers within the safe set St. This set
is defined in equation (2.9), where it is shown that the set only includes points of the safe set whose
upper confidence bound is larger than the maximum lower bound. Furthermore, the expanders set
Gt, defined in equation (2.10), contains all the points within the safe set that when evaluated with
the auxiliary function gtpθq return a positive value. This auxiliary function uses the L-Lipschitz
continuity assumption to provide new points that with a high probability will be inside the safe
set.

Mt “ tθ P St | utpθq ě max
θ

1
PSt

ltpθ
1

qu (2.9)

Gt “ tθ P St | gtpθq ą 0u

gtpθq “ |tθ
1

P D z St | utpθq ´ Ldpθ, θ
1

q ě τu|
(2.10)

where L is the Lipschitz constant and dp¨, ¨q is a metric on D.

The SafeOpt algorithm trades-off expanding the safe set and exploiting the possible maximums
within it to find the reachable optimum point. Note that the algorithm relies on the Lipschitz
continuity and the Gaussian Process confidence bounds property, which ensures that the real
black-box function will lie within the surrogate model confidence bounds with a high probability.

The approach of introducing a constraint works well in a reduced set of cost function weights.
However, the method starts to become infeasible when trying to tune a larger number of parameters
due to its scalability issue. This is due to the discretization of the parameter space which escalates
exponentially. Although there exist some methods to escalate the approach, such as using particle
swarms and relying on heuristics [6], these methods did not produce good results in this project
setup when tuning a large number of parameters and they did not produce better results than
SafeOpt even when a reduced number of parameters as tuned. Thus, the constrained Bayesian
Optimization is limited to tuning 1 to 3 cost function weights. To achieve the best performance,
the most sensitive parameters are chosen to be tuned with SafeOpt. These are the cost of the
deviation from the reference line (wn), the cost of the reference longitudinal velocity tracking
(wvx

), and the cost of the derivative of the rear and front longitudinal tire forces (w 9Fx,R
, w 9Fx,F

).

2.2 Implementation
This section describes the implementation of the Bayesian Optimization method. The three main
blocks of the algorithm are the interface with the simulator, the Bayesian Optimization module, and
the addition of constraints to the problem. The whole pipeline of the algorithm was implemented in
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Python and it uses the Robot Operating System (ROS) library to communicate with the simulator
and the MPC.

2.2.1 Simulator interface
The simulator interface handles the communication with the simulation and keeps track of the
state of the car. The interface triggers the simulation to try a new set of parameters and ends it
in the following cases:

• The desired number of laps are completed.

• The car gets stuck and cannot recover. A high lap time is applied.

• The car goes completely out of track. A high lap time is applied.

Furthermore, this interface handles the penalties applied for knocking down cones which are added
to the total lap time. In the early development stages of the algorithm, these penalties were
applied discretely with respect to the state of the car, in such a way that a penalty of 2 seconds
was added for every cone that the envelope of the car came in contact with. This approach was
adopted to simulate a real Formula Student Driverless event as much as possible, as the rules of
the competition state that a knocked-down cone adds a penalty of two seconds to the lap time.
However, it was found that applying these discrete penalties caused very steep and abrupt changes
in the real black-box utility function. Hence, the samples of lap time extracted from the simulation
were falling out of the surrogate model confidence bounds with a considerable frequency. This was
not a problem when using unconstrained Bayesian Optimization, as the Gaussian Process was able
to efficiently update its posterior and change its mean and confidence bounds accordingly. However,
this behavior became a problem in the constrained Bayesian Optimization case, as points that were
violating the constraint were frequently added to the safe set and as a consequence, it generated
instability in the optimization.

For the aforementioned reason, a continuous penalty function for knocking down cones was in-
troduced. The main concept of this penalty function is the use of the sum of linear functions
(fdev_penaltypnq “ 0.075n) with respect to the deviation from the reference trajectory as a penalty
function. At each point in time, the deviation is extracted and the linear function is evaluated and
added to the penalty value. The linear function provides low penalties when the deviation is close
to zero and increases linearly providing higher values when the deviation increase. The slope was
selected as m “ 0.075 to smoothen the effect of penalties. Figure 2.5 presents the linear function
used in this project.

The approach of applying linear penalties with respect to the deviation instead of discrete penalties
smoothens the shape of the black-box lap time function and allows SafeOpt to perform better and
satisfy the safety constraint at all times.

2.2.2 Bayesian Optimization
The Bayesian Optimization module implements the unconstrained optimization described in Sec-
tion 2.1.1. It makes use of the surrogate model and acquisition function described in Sections 2.1.2
and 2.1.3, respectively.

Algorithm 2.1 below summarizes the implementation of the Bayesian Optimization module de-
scribed in Section 2.1.1. This algorithm iteratively calls the simulator with a proposed set of
parameters and acquires a lap time sample. This lap time is used to update the surrogate model
posterior to consecutively obtain the parameters that minimize the LCB. Furthermore, both the
parameters and the lap time samples are pre-processed to stabilize the training of the Gaussian
Process and, hence, improve the performance of the optimization. Parameters are scaled to be
between 0 and 1 so that θ P r0, 1sd, where d is the number of parameters. This is done to to
leave the length scale of the Gaussian Process as an optimizable hyper-parameter. By scaling the
parameters between 0 and 1 the optimization of the length scale improves. Regarding the lap time
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Figure 2.5: Linear penalty function used to penalize deviation from the reference trajectory.

samples, they are first normalized using the optimal lap time, given a track, and, afterward, they
are standardized to a normal distribution of zero mean and unit variance. The mean and variance
of the standarization is computed every N iterations of the algorithm.

Algorithm 2.1 Bayesian Optimization
Input θ0, f „ GPpµ0pθq, k0pθ, θ

1

qq, D, fopt, β

1: y0 Ð f̃pθ0q{fopt Ź Run simulation with an initial set of parameters and normalize
2: Θr0s Ð normalizepθ0, Dq Ź Normalize parameters between 0 and 1
3: for t “ 1, . . . do
4: if t%N ““ 0 then
5: m Ð meanpy0 . . . ytq Ź Every N iterations recompute mean and variance of samples
6: v Ð variancepy0 . . . ytq

7: end if
8: ỹt Ð standardizepyt, m, vq Ź Standardize samples to 0 mean and unit variance
9: f „ GPpµtpθq, ktpθ, θ

1

qq Ð UpdatepΘ, ỹtq Ź Update model posterior
10: θt Ð arg minθPr0,1s µtpθq ´ βσtpθq Ź Optimize LCB
11: Θrts Ð θt

12: yt Ð f̃pdenormalizepθt, Dqq{fopt Ź Run simulation and normalize
13: end for

The training of the Gaussian Process surrogate model is implemented using GPyTorch [7], a GP
Python library implemented with PyTorch [8]. In addition, the optimization step is implemented
using BoTorch [9], an efficient Bayesian Optimization library implemented in PyTorch that provides
multiple optimization methods and acquisition functions.

2.2.3 Constrained Bayesian Optimization
The implementation of constrained Bayesian Optimization follows the formulation presented in
Section 2.1.4 and the algorithm is shown in Algorithm 2.2. The SafeOpt framework is used to
introduce a constraint on the lap time. This constraint ensures that the lap time will always be
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below a scaling factor (τscale) times the initial lap time. The initial lap time is acquired using a set
of parameters that guarantee stability and baseline performance. Thus, this constraint guarantees
that the car will perform in terms of lap time and save useful testing time.

Algorithm 2.2 Constrained Bayesian Optimization
Input S0, f „ GPpµ0pθq, k0pθ, θ

1

qq, τscale, D, fopt

1: θ0 Ð S0
2: y0 Ð ´f̃pθ0q{fopt Ź Run simulation with an initial set of parameters and normalize
3: τ Ð τscaley0 Ź Set the performance constraint
4: for t “ 1, . . . do
5: f „ GPpµtpθq, ktpθ, θ

1

qq Ð Updatepθt´1, yt´1q Ź Update model posterior
6: St Ð

Ť

θPSt´1
tθ

1

P D| maxpτ, ltpθqq ´ Ldpθ, θ
1

q ě τu Ź Update safe set
7: Gt Ð tθ P St|gtpθq ą 0u

8: Mt Ð tθ P St|utpθq ě maxθ
1
PSt

maxpτ, ltpθ
1

qqu

9: θt Ð arg maxθPMt
Ť

Gt
wtpθq Ź Perform greedy optimization

10: yt Ð ´f̃pθtq{fopt Ź Run simulation and normalize
11: end for

As previously mentioned in the formulation section, the lap time samples need to be multiplied
by -1 to be able to minimize the black-box function, as the algorithm tries to find a maximum of
a given surrogate model. This is done in step 2 in Algorithm 2.2, together with the normalization
of the lap time. Note that in this implementation neither the samples are standardized nor the
parameters are normalized. The samples cannot be standardized as we want to use a constant
constraint that is related to the initially normalized lap time. Furthermore, the parameters are not
normalized as this did not show any improvement, on the contrary, the results were worse than
when not applying the normalization. This behavior might be the consequence of using GPy to
implement the Gaussian Process. On the other hand, using GPyTorch benefits from normalization.

The training of the surrogate model is implemented using the GPy library [10], as the SafeOpt
library requires the use of GPy. The optimization of the surrogate model is implemented using the
SafeOpt library and the domain is discretized in 200 points.
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Chapter 3

Results

This chapter presents the results of the optimization methods presented in this project, namely
Bayesian Optimization and its constrained variant. Simple regret and cumulative regret over time
(see Equation (3.1)) are used as the main metrics to test the performance. Instant regret represents
the difference between the current lap time compared to the optimal lap time, whilst cumulative
regret over time is the mean of the instant regrets at time t. The target performance is to make the
cumulative regret over time converge to the lowest possible value, as this means that the optimiza-
tion has found the parameters that provide a lap time close to the optimal under our modelling
assumptions. As for the instant regret, it provides an intuition of how the current iteration per-
forms and how far away is from the optimal lap time. Furthermore, the minimum lap time sample
is also taken into account, as well as the number of constraint violations and the sampling process
for the case of constrained Bayesian Optimization.

rptq “ f̃pθtq ´ fopt

Rptq “
1
t

t
ÿ

k“1
rpkq

(3.1)

3.1 Bayesian Optimization

3.1.1 Regrets and lap time improvement

In order to evaluate the effectiveness of Bayesian Optimization using LCB as acquisition function,
we run the algorithm using the whole parameter space, thus the parameter vector θ resembles the
vector of Equation (1.6). The optimization is able to reduce the lap time by almost 2 seconds,
which is an impressive improvement in autonomous racing. Table 3.1 presents the improvement in
lap time concerning the number of iterations of the optimization. Even though the lap time keeps
decreasing with the number of iterations, as the parameter vector contains more than 30 parame-
ters, the optimization needs a high number of iterations to find global optimums. As the number of
parameters decreases, the optimization requires fewer iterations to converge to an optimal point.

19
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Iteration 1st lap 2nd lap 3rd lap 4th lap Average
Initial 24.65 24.34 24.36 24.28 24.41

10 24.48 24.22 24.24 24.19 24.28
50 23.59 23.41 23.32 23.36 23.42

100 23.24 23.03 22.95 22.98 23.05
450 22.71 22.62 22.51 22.48 22.58

Table 3.1: lap times and average lap time (in seconds) achieved with the parameters selected by
Bayesian Optimization at certain iterations.

Figure 3.1 presents the regret plots achieved with Bayesian Optimization. The method achieves
sublinear cumulative regret as seen in the top figure. Furthermore, it is converging to low cumulative
regrets which indicates that the parameters are converging to an optimal point. Note that the regret
cannot converge to 0, as the model used to compute the optimal lap time is simple compared to the
high-fidelity model used in the simulation. Thus, the optimal lap time overestimates the capacities
of the race car.

In Figure 3.1 the instant regret is also visualized. It can be seen that, on average, the optimization
selects parameters that produce low regrets. However, some spikes are present in the regret. These
spikes are the result of the Bayesian Optimization trying to explore new points with little or no
samples around them. This exploration can sometimes lead to high lap times or the car going out
of the track, which is penalized with a high lap time.

Another interesting feature that can be seen in Figure 3.1 is that the instant regret suddenly goes
down on average around the 300th iteration. This is the result of exploring new regions that had
little samples around them that led to an improvement in terms of lap time.

Figure 3.1: Regret plots using Bayesian Optimization. Top: cumulative regret over time. Bottom:
instant regret.

Besides the regret plots, it is important to account for the number of knocked-down cones at
each iteration and the evolution throughout the optimization. Figure 3.2 presents the number of
knocked-down cones with respect to the iterations. On average, the number of knocked-down cones
decreases with the number of iterations. This result makes sense, as each cone down adds a lap
time penalty, which is what we are trying to minimize by using Bayesian Optimization.

Results presented in Figures 3.1 and 3.2 focus on a specific instance of Bayesian Optimization
and, therefore, do not represent the average performance. To be able to evaluate the average
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Figure 3.2: Number of cones down at each iteration of the optimization.

performance, average regrets are introduced. Figure 3.3 presents the mean and standard deviation
of the cumulative regret computed with 7 evaluations of the algorithm for 95 iterations. From
this figure, it can be inferred that on average the algorithm always achieves sub-linear regret,
although the steepness of the regret changes depending on the evaluation as shown by the variance.
Furthermore, from the average and the deviation of the number of cones down displayed in Figure
3.3 it is clear that the number of cones down quickly decreases over time and approaches zero.

3.1.2 Parameter convergence
The previous section was devoted to presenting the results of the optimization in terms of lap
times. However, it is also important to identify if the parameters are converging to a value within
acceptable flickering bounds. Figure 3.4 shows the values of a reduced number of parameters with
respect to the optimization iterations. As seen in the figures, the parameters converge to a value,
which represents the optimum. The flickering is related to the fine-tuning of Bayesian Optimization,
which keeps optimizing to fine-tune the parameters.

Plots in Figure 3.4 also show the behavior at the beginning of the optimization process, with
parameters jumping around and having a considerable amount of flicker. This phenomenon is due
to the initial lack of data, which in turn makes the Bayesian Optimization sample at uncertain
points that practically comprise the whole parameter space. Thus, this lack of data leads to jumps
in the parameter space. This initial flickering phase increases with the size of the state space.
This initial flickering is natural in BO as it will explore more at the begining and provide better
results at the end. In addition, some spikes occasionally appear on these convergence plots, which
are associated with either the algorithm trying to explore a completely different region or the
optimizer not being able to solve the problem at that particular iteration and, hence, providing a
value that is not optimum.

3.1.3 Surrogate model
To validate the performance of the surrogate model, Bayesian Optimization is run to tune 1 or 2
parameters only so that the Gaussian Processes can be visualized. With this method, the capacity
of the model to represent the data and underlying black-box function can be evaluated. Figures
3.5 and 3.6 present the surrogate models at different stages of the optimization for the 1-D and
2-D cases, respectively. It is visible that the surrogate model is capable of modeling the lap time
function and therefore the Bayesian Optimization can produce the expected results which were
introduced in the previous sections. Even though the data is disturbed with noise, the variance of
the Gaussian Process can capture and model this aleatoric noise, this is visible in the 1-D case where
the variance can be easily plotted together with the mean and confidence bounds. Furthermore, it
is visible that the LCB method is sampling at potential minimums, which is the desired behavior
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Figure 3.3: Average regret over time and cones down of Bayesian Optimization.

3.2 Constrained Bayesian Optimization

3.2.1 Surrogate model

As mentioned in Section 2.1.4, the SafeOpt Bayesian Optimization is evaluated with 1 or 2 pa-
rameters only. However, to evaluate the mean and confidence bounds of the Gaussian Process and
the sampling of the algorithm only the 1-D case is presented in this section, while the other case
is evaluated using the regret plots and constraint violations. Figure 3.7 shows how the algorithm
samples the new possible maximizers or expanders that maximize the variance within the safe set
in the case of tuning θ “ wvx

and setting a constraint of τscale “ 1.07. In the beginning, the algo-
rithm tries to quickly expand the safe set due to the Gaussian Process shape, but it realizes that a
constraint is violated and therefore it reduces the safe set. At this point, the algorithm expands the
safe set until the point where the lower bound of the surrogate model reaches the constraint. Thus
the algorithm finds the maximizers inside this safe zone. As the shape of the Gaussian Process
changes with the samples, the algorithm may expand but it is limited by the sample in the unsafe
zone, which constrains the Gaussian Process shape. Furthermore, there is another safe zone in the
region r125, 200s. However, the algorithm cannot sample in that zone because it expands using the
Lipschitz continuity assumption and, as all safe set samples are in regions r0, 60s, the unsafe zone
prohibits expanding to zone r125, 200s.
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3.2.2 Regrets and constraint violations
In this section, various regret plots of the 1-D and 2-D cases are presented, together with the lap
times. Figure 3.8 and 3.9 present the regret achieved with SafeOpt in the 1-D case by tuning wvx

and wn, respectively, as well as the lap time. Furthermore, the number of constraint violations is
shown in these figures. From the regrets, it can be inferred that the algorithm achieves sub-linear
regret while satisfying the constraint at almost all times. Furthermore, if a constraint is violated,
as in the case of Figure 3.8, the safe set quickly adapts, as well as the Gaussian Process shape, to
avoid further violations. In the figures, the convergence of the parameters can also be inferred and
it can be concluded that the parameters converge to an optimal point after a few iterations of the
optimization.

For the 2-D case, Figure 3.10 presents the cumulative regret, the lap time, and the number of
violations. As in the case of 1-D, SafeOpt achieves sub-linear regret and satisfies the constraints,
except for two points where the car hits too many cones, as seen in the lap time plot. In the
beginning, the cumulative regret increases due to the expansion of the safe state that yield high
lap times, but after some iterations, the surrogate model captures this behavior and the regret
starts going down in a sub-linear fashion. The most sensitive parameters (wvx

, wn) are chosen to
conduct the experiments to properly test the algorithm.
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Figure 3.4: Values of wvx
, wn, wkvel

, w 9Fx_fl
, wS2 , wαfl_N

throughout the iterations of Bayesian
Optimization.
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Figure 3.5: Gaussian process of lap time with respect to wvx
with 5, 10, 15, and 20 samples.

Figure 3.6: Gaussian process of lap time with respect to wvx
and wn with 5, 10, 15, and 20 samples.
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Figure 3.7: Gaussian Process, samples and constraint at iteration 5, 20, and 100 of wvx
tuning

Figure 3.8: Cumulative regret, lap time, and number of safe constraint violations over time of wvx
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Figure 3.9: Cumulative regret, lap time, and number of safe constraint violations over time of wn

Figure 3.10: Cumulative regret,lap time, and number of safe constraint violations over time of wvx
,

and wn
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Chapter 4

Conclusion and future work

4.1 Conclusion
This project aims to use Bayesian Optimization to find the cost function weights of an MPC used
in an autonomous racing environment that maximize the performance of the race car, which is
equivalent to minimizing the lap time. The tuned weights are used for AMZ’s prototype race car,
Bernina, at the Trackdrive and Skidpad disciplines of Formula Student. The goal is to achieve the
best possible lap time while satisfying a performance constraint. This constraint is formulated in
terms of lap time so that the race car always achieves a lap time lower than the constraint.

In the first approach, unconstrained Bayesian Optimization is used to tune the whole set of cost
function weights in an offline manner and rely on a high-fidelity simulator to provide the lap times
and the state of the car at all times, which is used to add a time penalty for every knocked-
down cone. A Gaussian Process is used as a surrogate model to approximate the lap time black
box function and the Lower Confidence Bounds acquisition function is minimized to acquire new
proposals of parameters.

The unconstrained Bayesian Optimization approach achieves sub-linear regret and is capable to
reduce the lap time by two seconds compared with the initial hand-tuned parameters. Furthermore,
the results show that the number of cones being knocked down decreases over the iterations.
However, the number of iterations needed to achieve such a lap time improvement increases due
to the large parameter space, which contains more than 30 parameters.

Constrained Bayesian Optimization is introduced in an attempt to be able to tune a reduced
number of parameters in an online manner with the real platform in the near future. To be able to
tune with the real platform, a performance constraint to decrease the testing time is introduced.
This performance constraint is introduced in the lap time surrogate model in order to make sure
that the lap time will always stay below a certain threshold. This constraint usually avoids knocking
down cones and going out of the track, as these are penalized with higher lap times.

Safe Bayesian Optimization is tested with the 1-D and 2-D cases using the most sensitive param-
eters. SafeOpt [2] is used to implement the safe Bayesian Optimization to tune the MPC weights.
The approach achieves sub-linear regret and the constraints are rarely violated. These results val-
idate the safe approach and open the door to online testing of the algorithm in the near future.
However, constrained Bayesian Optimization is only useful to tune a reduced amount of parameters
due to its scalability issues, as the parameter space needs to be discretized. Thus, the methodology
to obtain the maximum performance of the MPC in terms of lap time is to run the unconstrained
Bayesian Optimization offline in simulation and, then, to use the results as initial parameters of

29
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the safe Bayesian Optimization to fine-tune the most sensitive parameters in an online manner
with the race car.

4.2 Future works
The main issues of the constrained Bayesian Optimization approach are the impossibility to scale to
a larger set of parameters, as well as the unavailability of exploring possible global optimums due to
the existence of disjoint safe parameter spaces. Furthermore, the tuning of the cost function weights
of the MPC depends on external factors such as the tire temperature and the grip conditions. These
external factors bring context into the Bayesian Optimization and can be taken into account if they
can be measured. By taking the contextual factors into account, the optimization becomes more
robust and generalizes better against these external factors.

The first approach to tackle scalability would be to implement the method used in [11], which
decomposes the global optimization into a sequence of 1-D optimizations, which are more efficient
to solve. However, this method is still vulnerable to disjoint safe spaces.

Another way to introduce scalability would be to use the method proposed in [12]. Besides providing
scalability, this approach tackles the issue of not being able to explore disjoint safe parameter
spaces, which we encounter with SafeOpt. The method leverages the Markov property of the
dynamic system state to learn backup policies without actively exploring the parameter space and
uses these policies to provide safety when evaluating policies outside the safe set.

Contextual information could be used achieve probably optimal behavior with respect to the con-
text, which yields an overall better performance of the optimization. This method relies on adding a
kernel to the Gaussian Process surrogate model to capture the contextual information, as presented
in [13]. Furthermore, this method has proven to work in the case of MPC tuning for autonomous
racing for modeling contexts such as weather conditions [1].
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