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Abstract

Neural implicit surface reconstruction methods have gained popularity due to their ability to recover accu-
rate dense 3D surfaces via neural volume rendering. Despite the success in reconstructing richly textured
objects, existing methods struggle when faced with areas of low texture, particularly planar surfaces. This
difficulty with low-texture originates due to the lack of constraints, since these methods rely on photometric
consistency only. To address this issue, we propose VF-NeRF, a novel neural surface reconstruction method
that models the scene geometry as the Vector Field (VF), which consists of a unit vector directed to the
nearest surface point. Specifically, we make use of a dual Multi-Layer Perceptron (MLP) to represent the
VF and the color of the scene. Furthermore, we develop a novel density function as a transformation of the
VF and use it to learn the VF representation through volume rendering. Our method is further refined by a
tri-phased optimization routine comprising initial VF training, a self-learning stage, and a refinement phase.
We strategically incorporate depth map priors into the optimization to aid the training process and enhance
the scene representation. We demonstrate the capacity of our method to accurately reconstruct indoor scenes
and show state-of-the-art results in public datasets such as Replica and ScanNet.
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Chapter 1

Introduction

Multi-view image-based 3D scene reconstruction is a cornerstone challenge in computer vision [15]. Such
reconstructed geometries have a wide array of applications, spanning augmented reality to mapping for
robotic applications. Traditional multi-view stereo (MVS) algorithms [11, 40, 41, 46, 57] leverage matching
and triangulation to derive 3D point coordinates from given input images. Nonetheless, they often struggle
in regions characterized by uniform low-texture or repetitive patterns.

Learning-based methods have led to significant improvements in multi-view reconstruction. Neural Ra-
diance Fields (NeRF)[27, 31, 32, 38] model the scene surface density and color with a multi-layer perceptron
(MLP) to map the points in space and their corresponding viewing directions to the density and RGB values.
Even though these methods are capable of generating high-quality novel views via volume rendering, the
reconstructed geometry is often noisy and inaccurate due to the low fidelity of the predicted surface density.

Neural implicit representations have gained significant attention in recent studies [34, 54], primarily
due to their capability to address constraints inherent in traditional methods and improve the low-fidelity
geometries reconstructed by NeRF. Employing an MLP to model the surface’s implicit function and vol-
ume rendering [32] to render the scene into images, methods like [35] use occupancy grids as the implicit
function, whilst, in contrast, works like [24, 48, 53] employ the Signed Distance Function (SDF). Recent
works, such as [29], make use of the Unsigned Distance Function (UDF), which can accurately represent
open and closed surfaces. However, the reconstructed geometries are often noisy. Moreover, the aforemen-
tioned methods’ dependency on photometric consistency for implicit function learning can be problematic,
particularly in low-textured planar regions.

To improve the geometry reconstruction of planar regions, the authors of ManhattanSDF [14] propose
to use semantic and geometric constraints in the optimization while still leveraging the SDF as the neural
implicit function. Even though this method has proven to be successful in reconstructing indoor scenes with
a majority of planar surfaces, ManhattanSDF requires a considerable amount of assumptions and constraints.

Recently, Vector Field (VF) representation has emerged as a novel surface implicit representation, as
illustrated in [39]. This method involves associating each position in the 3D space with a unit vector directed
towards the nearest surface. Notably, the VF showcases its ability to faithfully represent both open and
closed surfaces, with particular strength in piecewise planar surfaces. However, the study confines itself to
a supervised learning paradigm, whereby the representation is directly learned from provided meshes, point
clouds, or equivalent surface representations.

In this work, we suggest using VF as the implicit representation for 3D surfaces and learning it with
multi-view images through neural volume rendering [53]. We adopt a dual-MLP strategy: one MLP
estimates the VF for any spatial point, and the other predicts RGB color values. Drawing inspiration
from [48, 53], we express the surface density in neural volume rendering based on the VF, improving training
stability in the presence of sudden depth variations. Our approach proves particularly effective on piecewise
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CHAPTER 1. INTRODUCTION

planar surfaces, like indoor scenes, delivering state-of-the-art results. We rigorously evaluate our method
against leading benchmarks for indoor scenes, including ManhattanSDF [14], NeuRIS [47], MonoSDF [56],
and Neuralangelo [24], in indoor datasets such as Replica [44] and ScanNet [9]. Two examples of recon-
structed indoor scenes using our method are presented in Figure 1.1. In summary, our contributions are
twofold:

• We propose to learn the VF representation of 3D scenes with multi-view images via volume rendering.

• We demonstrate the effectiveness of our method on different indoor scene datasets, showing state-of-
the-art results.

Figure 1.1: VF-NeRF. Indoor scenes reconstructed with VF-NeRF.

Thesis Organization

This project is divided into three main stages. In the initial stage, we investigate how to learn the VF without
directly using the ground truth normal vectors as training targets. During this phase, our goal is to identify a
function that, when applied to the VF, effectively represents a surface. Once we have this function, we delve
into how it can be used in the training process to effectively learn the VF representation.

The second stage involves learning the VF representation through volume rendering using multi-view
images. In this context, we delve into the design of a neural volume rendering density function that depends
on the predicted VF. Furthermore, a cost function with competing objectives is engineered to achieve the
desired results. To enhance the results, we also introduce some supplementary components.

In the final stage, we focus on applying the VF representation to indoor scenes. Within this scope,
we introduce some indoor-specific objectives to the cost function. Additionally, we devise an optimization
strategy that includes two phases of multi-view reconstruction using neural volume rendering, separated by
a self-supervision phase. Notably, we find that this optimization approach enhances the VF representation.

The aforementioned phases, together with all the implementation details, are specified in Chapter 3. Fol-
lowing the methodology, the experiments, their results, and comparisons with benchmarks are elaborated
in Chapter 4. Finally, concluding remarks and findings of this study are presented in Chapter 5.
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Chapter 2

Related Work

Multi-view Surface Reconstruction. Traditional MVS approaches have often relied on feature matching
for depth estimation [2, 3, 4, 12, 23, 40, 41, 42]. These classical methods extract image features, match
them across views for depth estimation, and then fuse the obtained depth maps to form dense point clouds.
Voxel-based representations [1, 11, 43] rely on color consistency between the projected images to generate
an occupancy grid of voxels. Subsequently, meshing techniques, like the Poisson surface reconstruction [20,
21], are applied to generate the surface. However, these methods typically fail to reconstruct low-textured
regions and non-Lambertian surfaces. Additionally, the reconstructed point clouds or meshes are often noisy
and missing surfaces.

Recently, learning-based methods have gained attention, offering replacements for classic MVS meth-
ods. Methods like [5, 16, 50, 52] leverage 3D CNNs to extract features and predict depth maps, while
others [6, 13] construct cost volumes hierarchically, yielding high-resolution outcomes. However, these
methods often fail to accurately reconstruct the scene geometry due to the limited resolution of the cost
volume.
Neural Radiance Fields (NeRF). In recent studies [27, 31, 32, 38] the potential of MLPs to represent
scenes, both in terms of density and appearance, using a singular network has been explored. While these
techniques can produce photorealistic outcomes for novel view synthesis, determining an isosurface for
the volume density to illustrate scene geometry remains a challenge. Commonly, NeRF uses thresholding
techniques to derive surfaces from the predicted density. However, these extracted surfaces can often exhibit
noise and inaccuracies.
Neural Scene Representations. Neural-based scene representation approaches employ deep learning to
learn properties of 3D points and generate geometry representations. Traditional methods such as point
clouds [10, 26] and voxel grids [7, 49] have been primary choices for detailing scene geometry. More
recently, implicit functions, such as occupancy grids [34, 35] and SDF [18, 24, 28, 36, 48, 53, 54], have
gained popularity due to their precision in capturing scene geometry. For instance, in [28, 34] a novel dif-
ferentiable renderer to learn the scene geometry from images is proposed, while [54] focuses on modeling
view-dependence appearance, which proves successful in non-Lambertian surfaces. However, these meth-
ods rely on masks to accurately reconstruct the geometry from multi-view images. Consequent works, such
as VolSDF [53] and NeuS [48], introduce a second MLP in the NeRF context to represent the geometry
as the SDF, further leveraging volume rendering to learn the geometry from images. Building upon these
methods, Neuralangelo [24] takes inspiration from Instant Neural Graphics Primitives (Instant NGP) [33]
to introduce hash encodings in neural SDF models, enhancing surface reconstruction resolution. However,
a challenge persists as these methods tend to fail in large indoor planar scenes with low-texture regions,
leading to inaccurate surface reconstruction.
Priors for Neural Scene Representations. Several studies have explored the integration of priors into
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CHAPTER 2. RELATED WORK

the optimization to improve the reconstruction of large indoor scenes. For instance, Manhattan-SDF [14]
suggests incorporating dense depth maps from COLMAP [41] to facilitate the 3D geometry learning and
employs Manhattan world [8] priors to address the challenges posed by low-textured planar surfaces. A
limitation of this approach is its reliance on semantic segmentation masks to pinpoint planar regions, ad-
hering to the Manhattan world assumption. This dependency can lead to added complexity and potential
inaccuracies in regions where segmentation is less accurate. More recently, NeuRIS [47] proposes to use
normal priors to guide the reconstruction of indoor scenes. Expanding on this work, MonoSDF [56] lever-
ages both normal and depth priors, incorporating monocular cues into the optimization process. By using
normal priors, these methods successfully remove the Manhattan world assumption, thereby enhancing the
reconstruction of indoor scenes.
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Chapter 3

Method

In this work, we propose VF-NeRF, a novel method for reconstructing high-quality scene geometry using
multi-view posed images. Our method uses VF to represent the scene geometry and color to represent its
appearance. To this end, we first review neural volume rendering as a means to derive geometry from images
in Section 3.1. We then address how the scene geometry can be represented using VF in Section 3.2 and
discuss how this representation is used to define the surface density at any point in space in Section 3.3.
Finally, we outline the complete optimization process in Section 3.4 and present the optimization strategy
for indoor scene reconstruction in Section 3.5. An overview of our method is presented in Figure 3.1.

VF MLP

VF

Volume rendering

surfacep

Color MLP

Geometry and 
color decoders

Input image

camera view

3D scene Rendering

σ

Rendering losses

Regularization
losses

fϕ

cψ

Lcenter

Lnorm

Lext

x

DC

DC

Lc Ldepth

Figure 3.1: Overview of the method. We use VF to represent the geometry of a scene. Specifically, given a
batch of rays, we predict the VF and color of the points of the ray to volume render the predicted RGB and
depth. We design a specific function to transform VF to surface density.
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CHAPTER 3. METHOD

3.1 Neural Volume Rendering

Neural volume rendering [19] is a method to generate images from spatial locations consisting of 3D points
and their viewing direction. Given a posed image and its viewing direction, volume rendering integrates
the color radiance of points along the ray. Denoting a ray emitted from a pixel belonging to the image as
p(t) = o+ dt with near and far bounds tn and tf , the color and depth of the pixel can be computed as:

C(p) =

∫ tf

tn

T (t)σ(p(t))c(p(t),d)dt (3.1)

D(p) =

∫ tf

tn

T (t)σ(p(t))tdt (3.2)

where o is the camera origin, d is the normalized camera viewing direction, σ(·) represents the surface den-
sity, c(·, ·) denotes the color at a given point and direction, and T (t) denotes the accumulated transmittance
along the ray from tn to t. In particular, the transparency function is defined as:

T (t) = exp

(
−
∫ t

tn

σ(p(s))ds

)
(3.3)

In this work, we adopt NeRF’s strategy [32] to discretize Equation (3.1) and Equation (3.3) using nu-
merical quadrature, namely the Riemann sum. Hence, we represent the color and depth of a pixel as follows:

C(p) ≈
N∑
i=1

Ti(1− exp (−σiδi))ci, where Ti = exp

−
i−1∑
j=1

σjδj

 (3.4)

D(p) ≈
N∑
i=1

Ti(1− exp (−σiδi))ti (3.5)

where δi = ti+1 − ti is the distance between samples along a ray. Note that Equation (3.4) can be seen as
traditional alpha composing with alpha values αi = 1− exp (σiδi).

Methods such as NeRF and its variants [27, 31, 32, 38] propose to model both surface density and color
functions within a singular MLP with two heads. Notably, the viewing direction is only considered during
color prediction. Nevertheless, surfaces generated through these methods tend to be noisy and unrealistic.
More recent works, such as [24, 48, 53] define the surface density in terms of a learned SDF, which has
proven to enhance the quality of the reconstructed surfaces. In this work, we adopt a similar approach by
defining the surface density as a transformation of the learned VF. Section 3.2 and Section 3.3 provide the
details of how the VF can be used to represent surfaces and the transformation needed to predict the surface
density for volume rendering.

3.2 Surface Representation with Vector Fields

In VF-NeRF, the scene geometry is described using unit vectors that point towards the nearest surface. Let
Ω ⊂ R3 be an object’s surface in R3 and Γ ⊂ R3 be the collection of normal unit 3D vectors. We define
VF as a function f : R3 → Γ that maps a point in space to its unit normal vector that points to the closest
surface point of Ω. It’s important to mention that for points on the surface Ω, the VF experiences sudden
changes, shifting in direction. At this surface, the VF can correspond to either of the two opposing normal
vectors. For a formal definition of VF, we reference [39] and present it as follows:

6



CHAPTER 3. METHOD

f(x) =


xS − x

||xS − x||2
if x /∈ Ω

xS − x̂

||xS − x̂||2
if x ∈ Ω

(3.6)

where xS = argmins∈Ω ||x− s||2 is the closest surface point with respect to x, and x̂ = lim
||ϵ||2→0

x+ ϵ is a

surface point, with ϵ ∈ R3 being an infinitessimal 3D vector.
Given the definition of the VF representation, we aim to identify a function that can determine, using

the VF, whether a surface exists at a particular point in space. While the authors of [39] suggest using the
flux density of the VF to represent the surface of scenes, this operation requires evaluating the VF within an
infinitesimal spherical surface. This means that f needs to be evaluated at several points. For this reason, in
this work, we propose to use the cosine similarity between the VF at a given point x and an infinitesimally
close neighbor. This approach simplifies the process as it only demands the evaluation of f at two distinct
points in space. Formally, we express the cosine similarity between two VF vectors v1,v2 ∈ Γ as follows:

cos (v1,v2) =
v1 · v2

||v1||2||v2||2
(3.7)

From a theoretical point of view, when considering a point in space and its neighboring point that is
extremely close, their VFs will yield a cosine similarity of -1 if they are located on opposing sides of the
surface. Yet, in practice, the cosine similarity can exceed -1 for such points due to the varying distances
between neighboring points. To address this, we introduce a cosine similarity threshold to pinpoint surface
points. More explicitly, we represent the surface Ω of a scene as follows:

Ω = {x1 ∈ R3,x2 = x1 + ϵ | cos (f(x1), f(x2)) < γ} (3.8)

where ϵ ∈ R3 is an infinitesimal displacement and |γ| ≤ 1 is a cosine similarity threshold.

3.2.1 Window cosine similarity and annealing

As mentioned at the beginning of this section, the VF experiences a sudden sign change when crossing a
surface. Although this is the desired VF behavior, this can constitute training problems due to the non-
smoothness behavior. To this end, we adopt a sliding window approach to compute the cosine similarity and
smooth it at points near and at the surface. Additionally, the weights of the sliding window are annealed
throughout the training process.

Given a set of samples in a ray, we initially predict the VF at each point of the ray. We then define the
weights of a sliding window of size M , where the size is an even number, as w = [w0, w1, ..., wM−1]. The
predicted sliding window and predicted VFs are used to compute the averaged cosine similarity associated
with each point. The smoothed cosine similarity of a point is computed as the weighted average of the
cosine similarities using forward and backward neighbors of the ray. Therefore, given a ray of N +1 points
r = [x0,x1, · · · ,xN ] , we can compute N smoothed cosine similarities as:

cisim(r) =

{
cos (f(xi), f(xi+1)) if i < M/2 + 1 or i > N −M/2− 1∑M/2−1

j=0

[
wj cos (f(xi), f(xi−j−1)) + wj+M/2 cos (f(xi), f(xi+j+1))

] (3.9)

Note that the cosine similarity of the first and last points of the ray is not smoothed because the sliding
window would go out of range. Additionally, given N+1 points, we can only compute N cosine similarities
since the last point of the ray does not have a neighbor.

The effect of the weighted sliding window can be changed by modifying its weights. Initially, we start
with a uniform distribution where all the weights are equal and sum up to 1. We introduce an annealing
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Figure 3.2: Sliding window weights. Weights of the sliding window at different stages of the annealing.

process to progressively add more weight to the closest neighbors with the final objective to end with a
one-hot vector where all the weight is located at the next neighbor. The annealing process is depicted
in Figure 3.2. This process is linear and depends on the training epoch. Specifically, the weights of the
sliding window are computed at the beginning of every epoch using the following equation:

ŵi =
M

2
ReLU

(
1− n|i−M/2|

Nepochs

)
(3.10)

wi =
ŵi
||ŵ|| (3.11)

3.2.2 Learning the VF from the cosine similarity

To validate our proposition that the surface representation can be deduced through the cosine similarity of
the VF for adjacent points, we initially formulate an experiment before delving into volume rendering from
multi-view images. Given a scene representation, such as a mesh or a point cloud, our goal is to learn the
VF representation by leveraging the cosine similarity.

Given a set of 3D points in space, we aim to minimize the cosine similarity of the VF between pairs of
points on opposing sides of the surface. Conversely, we seek to maximize the cosine similarity for pairs of
points located on the same side of the surface. Consequently, we introduce the subsequent cosine loss:

Lcos = − 1

|S|
∑

{x1,x2}∈S

cos (f(x1), f(x2)) +
1

|F|
∑

{x1,x2}∈F

cos (f(x1), f(x2)) (3.12)

where S is a set of pairs of points on opposite sides of the surface and F is a set of pairs of points on the
same side of the surface. Note that it is important that the pairs are close enough so that when they are on
opposite sides of the surface their ground truth VF cosine similarity is close to -1.

Even though the cosine similarity loss enforces the direction of the VF, the unit norm is not enforced
with the aforementioned loss. Hence, we introduce a loss on the norm of the VF as follows:

Lnorm =
1

2(|S|+ |F|)
∑

{x1,x1}∈S
⋃

F

((||f(x1)||2 − 1)2 + (||f(x2)||2 − 1)2) (3.13)

Additionally, we empirically find that it is important to introduce a loss to supervise the VF of far-away
exterior points. To this end, given a set of exterior points D ⊂ R3 and their respective ground truth VF

8
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V ⊆ Γ, we define the exterior VF loss as follows:

LV F =
1

|D|
∑
x∈D

||f(x)− v||22 (3.14)

where v ∈ V is the ground truth VF.
The results of the experiment are depicted in Section 4.2.1

3.3 Density as Transformed VF

In neural volume rendering, the volume density is a function σ : R3 → R≥0 that maps a point in space, x,
to the rate that which light is occluded at that x. Previous works such as [32] model the density function
with a simple MLP, while more recent methods [48, 53] propose to define the surface density as a transfor-
mation of the neural SDF. Drawing inspiration from the former methods, we propose to model the surface
density as a function of the learnable VF. As mentioned in Section 3.2.2, we can examine if a point in space
belongs to an object surface using the cosine similarity. Therefore, using sliding window cosine similarity
introduced in Section 3.2.1, we redefine the surface density as a transformation that maps a point in the ray
r ∈ R(N+1)×3 to a scalar value, σ : R(N+1)×3 × N≥0 → R≥0. Leveraging the cosine similarity, we define
the surface density as follows:

σ(r, i) = ReLU(αΨµ,β(−cisim(r))− αΨµ,β(ξ)) (3.15)

where α, µ, β > 0 are learnable parameters and ξ is a cosine similarity threshold value left as a hyperpa-
rameter. ReLU is the rectified linear unit and Ψµ,β represents the Cumulative Distribution Function (CDF)
of the Laplace distribution. µ denotes the Laplacian mean, while β is Laplacian diversity and α is a scaling
factor. Formally, the Laplacian CDF is defined as follows:

Ψµ,β(x) = 0.5 + 0.5sgn(x− µ)

(
1− exp

(
−|x− µ|

β

))
(3.16)
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Figure 3.3: Density function. Left: Density function with different parameters. The maximum is always
reached at -1. Right: Behavior of the window cosine similarity and the density during different stages of the
annealing when crossing a surface. The figure is presented in 2D for simplicity. Additionally, we assume
that the ray is perpendicular to the surface.
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Note that σ is low when the cosine similarity is far from µ, which serves as a threshold to decide if
there is a surface at the given point of space. On the other hand, when the cosine similarity is equal to or
lower than µ, the density function increases. Additionally, the second Laplacian CDF is added to set the
density to zero when the cosine similarity is larger than ξ. The behavior of the density function with respect
to different parameter values, as well as an example of how the density changes when approaching and
crossing a surface are depicted in Figure 3.3.

Intuitively, the goal is to train the VF network through volume rendering with multi-view images with
the help of the density function. Ideally, after training, the density function yields high values at surface
points, which are expected to have a cosine similarity smaller or equal to µ.

3.4 Training

Our approach leverages a dual-MLP structure. First, fϕ : R3 → R3+256 predicts the VF of the scene along-
side a global geometry feature z ∈ R256, where ϕ represents the network learnable parameters. Second,
cψ : R3+3+3+256 → R3 approximates the radiance field based on a given spatial point, viewing direction,
VF, and global feature vector, where ψ represents the radiance field network learnable parameters. Conse-
quently, for a specific point on a ray x and its viewing direction d , we can predict the VF as (v, z) = fϕ(x)
and the radiance field as c = cψ(x,v,d, z). Additionally, our model incorporates three adjustable parame-
ters for the density function as described in Equation (3.15), namely α, µ and β.

Positional encodings [32] are used for the spatial positions x and viewing directions d to address the
challenge of learning high-frequency details of the scene. Furthermore, we find that initializing the VF
network to point toward the center of the scene enhances the training process.

During the optimization process, a batch of pixels P and their corresponding rays are sampled to mini-
mize the difference between the rendered images Ĉ(p) and the reference images C(p):

Lc =
1

|P|
∑
p∈P

||Ĉ(p)− C(p)||1 (3.17)

In addition to the color loss, we ensure that the VF has a unit vector property by applying the unit norm loss
Lnorm defined in Equation (3.13). Additionally, in object-centric scenes, the VF at distant points relative to
the object usually resembles a vector directed toward the object. To simplify the training, we incorporate a
loss that guides the VF for points outside the scene, denoted as Pext, to point towards the object’s center,
represented by cscene.

Lext =
1

|Pext|
∑

x∈Pext

∣∣∣∣∣∣∣∣f(x)− cscene − x

||cscene − x||2

∣∣∣∣∣∣∣∣
2

(3.18)

The overall loss is defined as a weighted sum of the individual losses:

L = wcLc + wnormLnorm + wextLext (3.19)

where wc, wnorm and wext are hyperparameters for weighting the individual losses.

3.5 Indoor Scenes Training

Learning the geometry of indoor scenes solely from images presents a challenge in reconstructing accurate
geometries, even in textured regions. To address this, we propose enhancing the learning of scene repre-
sentation by introducing a depth consistency loss that compares the rendered depth, D̂(p), with depth maps
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derived from multi-view stereo methods [40, 41, 57], symbolized as D(p).

Ldepth =
1

|P|
∑
p∈P

||D̂(p)−D(p)||1 (3.20)

Considering that in indoor scenes, images are typically captured from within the scene’s geometry, we
introduce a loss function that guides points near the scene’s center, represented as Pcenter, to point outwards:

Lcenter =
1

|Pcenter|
∑

x∈Pcenter

∣∣∣∣∣∣∣∣f(x)− x− cscene
||x− cscene||2

∣∣∣∣∣∣∣∣
2

(3.21)

Hence, in indoor scenes, the overall loss function is defined as the following weighted sum:

Lindoor = L+ wdepthLdepth + wcenterLcenter (3.22)

Additionally, to improve the VF representation following the optimization of the loss detailed in Equa-
tion (3.22), we incorporate a self-supervision and refinement strategy post-initial optimization. In the self-
supervision phase, we utilize the learning approach outlined in Section 3.2.2, where the desired scene rep-
resentation is the VF from the initial training. In addition to the losses outlined in Section 3.2.2, we also
integrate the center loss as presented in Equation (3.21). Subsequently, we further refine the scene represen-
tation, employing the indoor scene loss at a reduced learning rate.
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Chapter 4

Experiments and Results

In this section, we first introduce the implementation details, datasets and metrics used in this work in Sec-
tion 4.1. We then present a detailed analysis of qualitative and quantitative comparisons of our method
against competitive baselines in Section 4.2 and Section 4.3. Finally, we showcase a set of ablation studies
in Section 4.4.

4.1 Experimental setup

4.1.1 Implementation details

Our method is developed using PyTorch [37]. The VF and color functions are designed as MLPs consisting
of 8 and 4 hidden layers, respectively. Alongside the use of positional encoding and the initialization method
specified in Section 3.4, the Adam optimizer [22] is employed. The learning rate is initialized at 5×10−4 and
is decreased using an exponential decay approach [25]. The training process spans 3300 epochs: 1900 for
initial training, 500 for self-supervision, and the final 900 for refining the model. Notably, weight annealing
for the sliding window technique is executed between the 300th and 1000th epochs. Each epoch’s iteration
count is equivalent to the dataset’s training image count, and 1024 rays are sampled during each iteration.
For each ray, we sample 200 stratified points perturbed with Gaussian noise. Additionally, we use a specific
version of the Marching Cubes algorithm, presented in [39], to extract the surface mesh from the predicted
VF with a resolution of 512.

We set the following weights of the multiobjective loss function: wc = 1.0, wnorm = 0.1, wext =
wcenter = 0.5, wdepth = 0.25. Regarding the density function parameters, we set the cosine similarity
threshold to ξ = −0.5 and initialize the learnable parameters to µ = 0.7, β = 0.5 and α = 100.

4.1.2 Datasets, metrics and baselines

Datasets. For object-centric scenes, we perform experiments on the DTU and BlendedMVS datasets [17,
51], which contain real objects captured from multiple views. For indoor scenes, we test the performance of
our algorithm on Replica [44] and ScanNet [9]. The Replica dataset consists of 18 synthetic indoor scenes,
where each scene contains a dense ground truth mesh, and 2000 RGB and depth images. The ScanNet
dataset contains 16113 indoor scenes with 2.5 million views, with each view containing RGB-D images.
Additionally, a Truncated Signed Distance Function (TSDF) integrated mesh is provided for each scene.
For replica, we sample 1 of every 20 posed images for training, while in Scannet we sample 1 every 40.
Metrics. For 3D surface reconstruction, we focus on evaluating our method with Chamfer distance and F1-
score [45]. Additionally, we also provide the peak signal-to-noise ratio (PSNR) to evaluate image synthesis.
The detailed definitions of these metrics are included in the supplementary material.

13



CHAPTER 4. EXPERIMENTS AND RESULTS

Baselines. We compare our algorithm against state-of-the-art volume rendering based methods for indoor
scenes: Manhattan-SDF [14], MonoSDF [56], NeuRIS [47] and Neuralangelo [24]. We use Marching
Cubes [30] to extract the meshes rendered by the baselines. Additionally, similarly to [14], we render depth
maps from the predicted mesh and re-fuse them using TSDF fusion to remove artifacts and possible arbitrary
surfaces generated at unseen points in space.

4.2 Object centric scenes

In this section, we first present preliminary experiments that demonstrate the geometric representational
power of the cosine similarity between VF adjacent points in Section 4.2.1. Consecutively, we showcase
our method’s capacity to reconstruct object-centric scenes from multi-view images in Section 4.2.2.

4.2.1 Non-explicit Vector Field learning

We conduct experiments on the DTU dataset to learn the VF from meshes generated with VolSDF. Given a
mesh, we sample points on the surface and randomly from the surrounding area of the object. We then apply
the losses outlined in Section 3.2.2. The qualitative outcomes of the mesh reconstruction, achieved through
the adapted marching cubes technique alongside the VolSDF-generated meshes, are displayed in Figure 4.1.
Our method introduces regularization and smoothing since the high-resolution details cannot be captured
by the reconstructed mesh. The results suggest that the geometry representation we proposed, based on the
cosine similarity of the VF, is apt for representing 3D scenes, even with the inherent smoothing.

O
ur

s
Vo

lS
D

F

Figure 4.1: Non-explicit VF learning qualitative results. The top meshes represent the reconstruction
using the learned VF. The bottom meshes are obtained using VolSDF and are used as the target geometry
for the VF representation. The VF can generally represent 3D scenes, although it introduces smoothing and
struggles to reconstruct high-frequency details

We analyze the representational capacity of an MLP to model the VF of a scene, using cosine similarity
as the learning mechanism. Figure 4.2 presents the learned VF of the scene projected onto three different
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Figure 4.2: Non-explicitly learned projected Vector Field. Predicted VF projected into several planes
of the z-axis. The color of the vectors represents the magnitude of its norm. The VF changes direction at
surface points as expected.

z-axis planes. As depicted in the figures, the VF directs to the nearest surface, inverting its direction upon
reaching surface points.

4.2.2 Multi-view 3D reconstruction

Prior to exploring the primary utility of our approach—its effectiveness in representing indoor scenes—we
initially assess its performance in object-centric scenarios. Adhering to the optimization procedure outlined
in Section 3.4, we learn the object geometry exclusively from a set of posed images. Our technique is
evaluated on two distinct scenes, one from the DTU dataset and the other from the BlendedMVS dataset.

Overall, our method is capable of representing the geometry of the scene as depicted in Figure 4.3.
Nevertheless, it lacks the high-level details in the scenes and tends to generate numerous arbitrary surfaces
unrelated to the actual object geometry. A potential reason for these discrepancies may be the uneven
distribution of posed images across the object’s viewpoints. Particularly for the DTU scene, the majority
of camera positions are concentrated in a specific area. Consequently, our technique struggles to accurately
capture the true VF in areas not covered by the camera, resulting in the presence of artifacts and surfaces
that blend with the object’s true geometry. This phenomenon can be observed in the VF visualization
of Figure 4.4, since we have vectors with opposite directions in regions of free space.
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Figure 4.3: Object-centric qualitative results. Our method can generally recover the scene geometry,
although it introduces smoothness and some artifacts.
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Figure 4.4: Projected Vector Field of object-centric scenes. Predicted VF projected into several planes
of the z-axis. The color of the vectors represents the magnitude of their norm. The predicted VF generally
changes direction at surface points, although it also presents this phenomenon in some regions of free space.

16



CHAPTER 4. EXPERIMENTS AND RESULTS

4.3 Indoor scenes

We evaluate our algorithm against state-of-the-art indoor scene reconstruction methods. We present quali-
tative and quantitative evaluations of 3D reconstruction in Section 4.3.1 and of novel view synthesis in Sec-
tion 4.3.2.

4.3.1 3D reconstruction

We evaluate our method with the Replica and ScanNet datasets. The qualitative results on Replica and Scan-
Net are shown in Figure 4.5 and Figure 4.6, respectively. Quantitative results on both datasets are depicted
in Table A.2. Additional detailed qualitative and quantitative results are included in the supplementary ma-
terial. Our method generally outperforms volume rendering based benchmarks, except for MonoSDF, in
terms of F-score and Chamfer distance in the Replica dataset. Additionally, we show competitiveness with
the benchmarks in ScanNet in terms of F-score.

Note that MonoSDF makes use of multiresolution hash-encodings, as well as normal priors, thus achiev-
ing accurate results in 3D reconstruction. The performance of Neuralangelo in indoor scenes since it does
not make use of depth information throughout the optimization. Manhattan-SDF can generally recover high-
quality scenes, although it struggles in some planar areas due to its dependency on semantic segmentation
masks. In contrast, our method can recover planar surfaces with great fidelity, although it can struggle
with high-frequency details. The capacity of our method to represent planar surfaces compared to the other
methods is depicted in Figure 4.7.

Replica ScanNet
r-0 r-1 r-2 o-0 o-1 o-3 o-4 Mean 0050 0084 0580 0616 Mean

F-score↑
Manhattan-SDF 0.778 0.896 0.796 0.757 0.492 0.893 0.838 0.779 0.732 0.873 0.709 0.604 0.730
Neuralangelo 0.297 0.410 0.216 0.321 0.234 0.195 0.159 0.262 0.283 - 0.284 0.093 0.220
MonoSDF 0.944 0.935 0.939 0.790 0.855 0.896 0.922 0.897 0.745 0.911 0.767 0.730 0.788
NeuRIS - - - - - - - - 0.755 0.758 0.729 0.648 0.723

VF-NeRF (Ours) 0.919 0.888 0.808 0.921 0.838 0.761 0.596 0.819 0.726 0.746 0.800 0.687 0.740
TSDF (Ours) 0.937 0.923 0.925 0.890 0.864 0.891 0.902 0.905 0.868 0.936 0.940 0.809 0.888

Chamfer Distance (mm)↓
Manhattan-SDF 494 65.2 392 77.5 1266 7.68 149 350 11.0 9.18 23.1 47.9 22.80
Neuralangelo 1113 67.9 1107 317 280 5464 1002 1336 95.6 - 196 523 272
MonoSDF 2.72 3.44 2.95 9.23 12.0 4.50 2.49 5.33 12.1 5.80 12.6 40.8 17.83
NeuRIS - - - - - - - - 11.3 10.6 24.6 34.3 20.2

VF-NeRF (Ours) 4.39 3.99 233 6.17 27.9 471 13.5 108.6 60.8 72.5 18.2 90.6 60.5
TSDF (Ours) 7.72 6.73 13.9 80.6 56.1 6.95 4.96 25.28 6.78 11.9 6.74 51.3 19.2

Table 4.1: 3D reconstruction quantitative results. Our method outperforms Manhattan-SDF and Neu-
ralangelo in most of Replica scenes. Additionally, it shows competitiveness in ScanNet in terms of F-score.
Note that Neuralangelo fails to reconstruct the scene surface in scene 0084 of ScanNet. Best result. Second
best result. Note that TSDF is only added as reference but not taken into account when ranking the methods.
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Figure 4.5: 3D reconstruction qualitative results on Replica. Our method outperforms Neuralangelo and
Manhattan-SDF in many scenes. Additionally, our method is more accurate on walls and floors.
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Figure 4.6: 3D reconstruction qualitative results on Scannet. Our method outperforms Neuralangelo,
Manhattan-SDF and NeuRIS in planar regions of the scenes such as walls and floors.

MonoSDF Manhattan-SDF VF-NeRF (Ours) Ground Truth

Figure 4.7: 3D reconstruction of plannar regions. VF-NeRF represents planar surfaces with higher accu-
racy and fewer artifacts compared to the benchmarks.
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4.3.2 Novel view synthesis

We present qualitative and quantitative novel view synthesis comparisons in Figure 4.8 and Table 4.2. Our
method generally renders high-quality views and outperforms Manhattan-SDF in terms of PSNR. How-
ever, NeuRIS and multiresolution hash-encoding methods—such as Neuralangelo and MonoSDF—present
outstanding results in Replica. However, our method demonstrates higher quality results compared to
Manhattan-SDF, Neuralangelo and MonoSDF in Replica, a more challenging and realistic dataset. More
qualitative results for each scene can be found in the supplementary material.

PSNR↑
Replica ScanNet

r-0 r-1 r-2 o-0 o-1 o-3 o-4 Mean 0050 0084 0580 0616 Mean

Manhattan-SDF 25.06 26.38 29.36 28.87 26.39 28.35 27.92 27.48 22.44 18.92 22.87 18.90 20.78
Neuralangelo 28.22 30.45 29.59 36.02 36.15 29.54 30.14 31.44 17.48 18.66 18.40 16.78 17.83
MonoSDF 27.91 30.29 31.16 36.26 36.80 30.70 32.63 32.25 17.61 33.11 27.16 17.46 23.84
NeuRIS - - - - - - - - 28.06 32.41 28.33 27.91 29.18

Ours 27.18 27.14 29.10 34.95 27.84 28.65 29.91 29.25 23.47 30.40 20.02 26.14 25.01

Table 4.2: Novel view synthesis quantitative results. In general, VF-NeRF renders higher-quality images
compared to Manhattan-SDF. Best result. Second best result.

Neuralangelo Manhattan- MonoSDF VF-NeRF Ground
SDF (Ours) truth

Figure 4.8: Novel view synthesis qualitative results. Our method can render accurate images with high-
frequency details. Compared to Manhattan-SDF, our method is more accurate and introduces less smooth-
ness in both datasets.

4.3.3 Limitations

Figure 4.9 presents the limitations of our method to reconstruct high-frequency details of scenes. As show-
cased, VF-NeRF introduces smoothness and therefore struggles in high-detailed areas. Additionally, as
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presented inSection 4.2.2, if the camera views do not homogeneously cover the scene, arbitrary artifacts
appear in the VF representation.

VF-NeRF Ground Truth VF-NeRF Ground Truth

Figure 4.9: Limitations. VF-NeRF struggles to reconstruct high-frequency details due to its inherent
smoothing.

4.4 Ablation studies

Loss terms. We analyze the impact of different loss terms on the surface representation and provide quan-
titative results. Specifically, we remove the following losses and study their effects: center supervision
Lcenter, exterior supervision Lext, unit norm Lnorm and depth Ldepth. We demonstrate that removing these
losses decreases the performance of our method, as presented in Figure 4.10 and Table 4.3. As shown, some
surfaces disappear and holes are present in the scene. Additionally, removing the depth loss significantly
decreases the performance since most of the surfaces of the scene do not have enough texture.
Sliding window annealing and initialization. Figure 4.11 and Table 4.3 show the results of ablating the
sliding window cosine similarity and the custom VF network initialization. In the case of the annealing, we
use normal cosine similarity with the next point of the ray instead of the weighted average to investigate the
importance of the sliding window. The results show that both elements enhance the surface reconstruction
of our method both qualitatively and quantitatively.
Number of points per ray. We investigate the importance of the number of sampled points per ray during
training. We provide results using 100, 150 and 200 points per ray in Table 4.3. As expected, we find that
using more points per ray enhances the performance of our method, although it comes with an increase in
training and inference time.

Precision ↑ Recall ↑ F-score↑ CD (mm)↓
w\o Lcenter 0.877 0.929 0.902 16.1
w\o Lext 0.533 0.915 0.674 168
w\o Lnorm 0.517 0.929 0.664 164
w\o Ldepth 0.292 0.453 0.355 344
w\o annealing 0.530 0.851 0.653 182
w\o initialization 0.735 0.898 0.808 83.9
100 points per ray 0.759 0.929 0.835 4.29
150 points per ray 0.847 0.929 0.886 6.79
VF-NeRF 0.910 0.932 0.921 6.18

Table 4.3: Ablations quantitative results. Removing loss terms, sliding window weighs annealing or the
VF network initialization decreases our method’s performance.
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w\o Lcenter w\o Lext w\o Lnorm

w\o Ldepth VF-NeRF Ground Truth

Figure 4.10: Losses ablations. Removing Lcenter, Lext and Lnorm generates holes in surfaces, mostly in
planar regions. Our method without Ldepth is less accurate, as most regions of the scene are low-textured.

w\o annealing w\o initialization VF-NeRF

Ground Truth

Figure 4.11: Annealing and initialization ablations. Our method without annealing or initialization gen-
erates more holes and artifacts, mostly in the ceiling and walls.
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Conclusion

In this work, we presented VF-NeRF, a novel neural approach for multiview surface reconstruction, utilizing
Vector Fields (VFs) to encapsulate the scene’s geometry. VFs consist of unit vectors directed towards the
nearest learned surface point. By transforming the VF, we can represent the volume density of each point
of the scene. The key idea is to learn the VF of the scene through volume rendering. Additionally, we
proposed a tri-phase optimization strategy, encompassing initial VF training through volume rendering,
self-supervised learning, and a refinement stage, to enhance the accuracy of the learned VF. The experiments
demonstrate the performance of our method to reconstruct indoor scenes, outperforming several state-of-the-
art methods on indoor datasets.

One limitation of our method is its inherent smoothing, which makes it hard to represent high-frequency
details. Moreover, a significant dependency of our technique is the necessity for consistent scene views
during the reconstruction to prevent distortions, particularly in regions not observed during the learning
phase. Additionally, VF-NeRF assumes homogeneous density with three hyperparameters. Future works
could explore using different hyperparameters depending on the geometry characteristics. Furthermore, our
method currently uses a uniform ray sampling strategy; hence, future research could consider integrating a
more sophisticated sampling strategy to refine the reconstruction accuracy. Finally, recent state-of-the-art
3D reconstruction methods have leveraged multiresolution hash-encodings to increase the representational
power of their models. Extending this concept to the VF representation in scenes may offer substantial
improvements in the fidelity of the reconstructed surface.
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Appendix A

Supplementary material

A.1 Detailed networks’ architecture

We present an illustration of the VF and color networks in Figure A.1

PE(x) FC FC FC FC FCFC FC

256 256 256 256 217 256 256 256
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VF

z

39

PE(d)

x

FC FC FC

256 256 256 256

c

cψ

Figure A.1: Networks’ architecture. The VF network takes a point in space x as input and applies posi-
tional encoding (PE(·)) before feeding it to the MLP. The color network takes the spatial point, the predicted
VF, the feature vector z, and the viewing direction d with positional encoding as inputs to predict the color.

A.2 Metrics

The definitions of 3D reconstruction metrics are depicted in Table A.1.

A.3 Baselines

We use the official Manhattan-SDF 1, MonoSDF 2 and NeuRIS 3 implementations as baselines. We adapted
the Replica dataset to use it in Manhattan-SDF, unfortunately, the NeuRIS does not support it. Additionally,
we use SDFStudio’s [55] implementation 4 of Neuralangelo.

1https://github.com/zju3dv/manhattan_sdf
2https://github.com/autonomousvision/monosdf
3https://github.com/jiepengwang/NeuRIS
4https://github.com/autonomousvision/sdfstudio
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Metric Definition

Precision meanp∈P (minp∗∈P ∗ ||p− p∗|| < 0.05)
Recall meanp∗∈P ∗(minp∈P ||p− p∗|| < 0.05)

F1-score 2·Precision·Recall
Precision+Recall

Chamfer Distance
∑

p∈P minp∗∈P ∗ ||p∗ − p||22 +
∑

p∗∈P ∗ minp∈P ||p∗ − p||22
MSE 1

MN

∑M−1
i=0

∑N−1
j=0 ||C(i, j)− Ĉ(i, j)||22

PSNR −10 · log10(MSE)

Table A.1: Metric definitions. P and P ∗ are the point clouds sampled from the rendered and ground truth
meshes. M and N are the height and weight of the images. C and Ĉ are the ground truth and rendered
images.

A.4 3D reconstruction quantitative results

We quantitatively evaluate the capacity of our method to reconstruct Replica and ScanNet scenes and com-
pare it against state-of-the-art neural volume rendering methods. We present these quantitative results for
each scene in Table A.2.

A.5 3D reconstruction qualitative results

We provide qualitative results for each scene of Replica and ScanNet in Figure A.2 and Figure A.3. We
include visualizations of state-of-the-art 3D reconstruction methods as comparisons.

A.6 Novel view synthesis qualitative results

Figure A.4 presents qualitative comparisons of novel view synthesis for each scene on Replica and Scannet.
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Replica ScanNet
r-0 r-1 r-2 o-0 o-1 o-3 o-4 Mean 0050 0084 0580 0616 Mean

Precision↑
Manhattan-SDF 0.674 0.867 0.746 0.703 0.382 0.905 0.784 0.723 0.819 0.892 0.685 0.714 0.778
Neuralangelo 0.265 0.458 0.176 0.261 0.269 0.122 0.153 0.243 0.359 - 0.310 0.138 0.269
MonoSDF 0.924 0.959 0.944 0.778 0.883 0.915 0.941 0.906 0.857 0.928 0.814 0.854 0.863
NeuRIS - - - - - - - - 0.822 0.776 0.740 0.755 0.773

VF-NeRF (Ours) 0.938 0.862 0.720 0.910 0.777 0.669 0.506 0.769 0.781 0.867 0.886 0.893 0.857
TSDF (Ours) 0.984 0.961 0.987 0.976 0.968 0.934 0.908 0.960 0.910 0.922 0.938 0.881 0.913

Recall↑
Manhattan-SDF 0.924 0.926 0.854 0.819 0.691 0.882 0.899 0.856 0.662 0.854 0.735 0.523 0.694
Neuralangelo 0.338 0.370 0.279 0.417 0.207 0.482 0.166 0.323 0.233 - 0.262 0.070 0.188
MonoSDF 0.964 0.912 0.934 0.802 0.829 0.878 0.904 0.889 0.660 0.896 0.725 0.637 0.730
NeuRIS - - - - - - - - 0.699 0.741 0.719 0.568 0.682

VF-NeRF (Ours) 0.902 0.915 0.919 0.932 0.910 0.882 0.724 0.883 0.686 0.654 0.658 0.559 0.639
TSDF (Ours) 0.893 0.887 0.871 0.818 0.779 0.852 0.897 0.857 0.830 0.950 0.943 0.748 0.868

Median Chamfer Distance (mm)↓
Manhattan-SDF 0.87 0.34 0.91 0.42 35.6 0.41 0.63 5.60 1.25 1.09 1.76 2.71 1.45
Neuralangelo 39.0 12.5 215 39.0 44.5 3754 174 611 28.8 - 29.2 251 103
MonoSDF 0.21 0.23 0.46 0.82 0.34 0.33 0.22 0.37 2.13 0.90 1.45 1.19 1.42
NeuRIS - - - - - - - - 0.57 2.35 1.48 2.42 1.71

VF-NeRF (Ours) 0.58 0.71 1.06 0.40 0.53 1.29 3.39 1.14 1.81 2.71 1.32 2.73 2.14
TSDF (Ours) 0.12 0.09 0.11 0.09 0.06 0.16 0.14 0.11 0.28 0.07 0.18 0.37 0.23

Table A.2: 3D reconstruction quantitative results of individual scenes on Replica and ScanNet. Best
result. Second best result. Note that TSDF is only added as reference but not taken into account when
ranking the methods.

27



APPENDIX A. SUPPLEMENTARY MATERIAL

R
oo

m
0

R
oo

m
1

R
oo

m
2

O
ffi

ce
0

O
ffi

ce
1

O
ffi

ce
3

O
ffi

ce
4

Manhattan- MonoSDF VF-NeRF TSDF Ground
SDF (Ours) (Ours) truth

Figure A.2: 3D reconstruction qualitative results on Replica.
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Figure A.3: 3D reconstruction qualitative results on ScanNet.
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Figure A.4: Novel view synthesis qualitative results.
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