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Abstract— One of the significant challenges in Model Predic-
tive Control (MPC) is the safe tuning of its cost function param-
eters. In safe tuning for MPC, the goal is to find the cost func-
tion parameters that maximize the system’s performance while
ensuring that the performance stays consistently above a given
threshold. In this context, we propose the Constrained Optimal
Auto-Tuner for MPC algorithm (COAT-MPC), a method that
safely explores the cost function parameters domain to reach the
most performant parameters. COAT-MPC makes use of Upper
Confidence Bounds (UCB) on the entire parameters’ domain
as the goal for each optimization iteration, and sequentially
explores the parameter space towards this goal. We present
an in-depth theoretical analysis of our proposed method,
establishing its safety with high probability and demonstrating
provable finite-time convergence. We perform comprehensive
simulations and comparative analyses with a hardware platform
against classical Bayesian Optimization (BO) and state-of-the-
art methods. With these experiments, we demonstrate that our
approach outperforms these competitive baselines in terms of
fewer constraint violations and improved cumulative regret over
time in the autonomous racing scenario. To the best of the
authors’ knowledge, this research represents the first successful
implementation of safe tuning in MPC. Additionally, we open-
sourced the code of the proposed method1.

I. INTRODUCTION

Model Predictive Control (MPC) is a prominent
optimization-based control framework that can handle
constraints and optimize system performance by predicting
the system’s future behaviour. MPC is widely used in
many robotic applications such as autonomous driving [1],
four-legged robots [2], and bipedal robots [3]. While MPC is
a successful optimal control technique, one of the significant
challenges in its implementation is the tuning of the cost
function parameters. The cost function, which defines the
control objectives, plays a crucial role in the performance of
the MPC. However, designing a cost function that balances
competing objectives is a non-trivial task that typically re-
quires significant trial and error. Moreover, the cost function
parameters often depend on the specific environment and
system dynamics, making it difficult to design a single set of
parameters that can perform well in all scenarios. Usually, the
task of fine-tuning cost function parameters involves heuristic
methods and demands expert knowledge, typically leading
to a significant number of costly experimental iterations.

In almost all the applications, we tune to maximize some
performance function, e.g., while tuning for racing, we
optimize the lap time. Unfortunately, often these performance
functions are a-priori unknown and need to be learned
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Fig. 1: COAT-MPC algorithm overview. The constrained Bayesian
Optimization proposes a new set of cost function weights θt, which are
evaluated on the system. The algorithm captures a noisy performance
function sample, which is used to update the Bayesian optimization
surrogate model posterior and acquire a new set of cost function weights.
The process is repeated until convergence.

through data. Naively, to find the optimal parameters, one
may try out all the parameters in a brute force approach,
however, this is highly inefficient and may lead the system
to halt with most of the parameters. For example, in tuning
an MPC for autonomous racing, it is undesirable to use
parameters that make the car move extremely slow, or even
stop before finishing a lap. To this end, our goal is to develop
an algorithm that automatically tunes the MPC cost function
weights and converges to the optimal set of tuning parameters
while ensuring that a desired performance function is above
a threshold throughout the process. Thus, also eliminates in-
efficiencies from trial and error, and prevents undesirable ef-
fects such as slowing down or halting in the tuning process.

To tackle this, we propose a novel algorithm: COAT-MPC,
Constrained Optimal Auto-Tuner for Model Predictive Con-
trol. COAT-MPC safely explores the space of parameters and
builds a belief about the a-priori unknown performance func-
tion through data, utilizing tools from Gaussian processes
[4]. COAT-MPC incorporates safe exploration ideas from [5],
[6], [7] and recursively recommends sufficiently informative
parameters that ensure exploration while satisfying the per-
formance constraint. We establish convergence guarantees to
the optimal tuning parameters in a finite number of samples
while ensuring performance constraint satisfaction with an
arbitrarily high probability. For finite time convergence, we
present a sample complexity bound by extending the analysis
of [7] from continuous to discrete domains. In particular, our
sample complexity result removes an explicit dependence on
the discretization size and thus significantly improves prior
safe exploration results in discrete domains [6], [8], [9].

Finally, we demonstrate the effectiveness of COAT-MPC in
the challenging application of autonomous racing. We tune a
Model Predictive Contouring Control [10] formulation with
the objective of optimizing the lap time while avoiding unde-
sirable effects such as halting. Our evaluation encompasses
a comprehensive analysis in both, simulation and on a 1:28
scale RC racecar [11]. We present a comparative analysis
against other automatic tuning methods including classical
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Bayesian optimization. The results demonstrate that our
approach outperforms other methods in terms of the number
of constraint violations and yields an improved cumulative
regret over time. To the best of our knowledge, this paper is
the first that presents a safe exploration algorithm for MPC
tuning while having strong theoretical guarantees.

II. RELATED WORKS

Controller tuning has been an active area of research in
the field of robotics and different methods have arisen in the
literature. For instance, optimization-based approaches have
proven to be effective in tuning the parameters of robotic
systems. These methods involve iteratively optimizing a user-
defined objective function through experiments [12], [13]. At
each iteration, the objective function gradients are calculated
and used to update the controller parameters. Despite the
efficacy of these methods, they require the availability of
an analytical objective function and the computation of its
gradients, which are often not available.

Recently, data-driven methods aimed at learning the
relationship between system parameters and a desired
metric have emerged as promising solutions for automatic
tuning. For instance, methods such as the Metropolis-
Hastings algorithm [14] and Policy Search methods [15],
have demonstrated state-of-the-art results in model-based
agile flight control.

Bayesian Optimization [16], [17] has been particularly
successful due to its ability to model the objective function
using a limited number of samples [18]. Bayesian Optimiza-
tion is a global optimization method that can efficiently find
the optimal solution of a black-box continuous function.
It utilizes a surrogate probabilistic model to represent the
objective function, which is updated as new data is acquired.
In the context of MPC parameter tuning, BO can be used to
efficiently explore the parameter space and find the optimal
cost function parameters for a given platform and environ-
ment [19] by selecting a proper objective function. This can
lead to improved performance while reducing the time and
effort required for manual tuning. Additionally, subsequent
works have introduced contextual information from the envi-
ronment or system [20], as well as considering the confidence
of the surrogate model to enhance the convergance rate of
BO [20]. However, it is worth noting that these BO methods
do not take into account constraints on the objective function.

While Bayesian Optimization is a powerful optimization
method for MPC parameter tuning, it has a limitation when
it comes to handling constraints. The standard BO algorithm
does not take into account constraints on its surrogate
model, which can lead to parameters that produce very
poor performance due to the unbounded exploration of the
algorithm. This is particularly problematic in the context of
robotics, where safety and performance during testing are of
paramount importance.

Several approaches have been developed to incorporate
constraints into the BO algorithm. One such approach in-
volves utilizing a variant of the Expected Improvement (EI)

function, referred to as the Constrained Expected Improve-
ment (EIC) [21], [22]. This approach involves modeling the
constraint function with a prior distribution and incorporating
a probability of violation into the acquisition function. It has
been shown to be effective in tuning MPC systems [23].
However, none of the aforementioned methods provide a
guarantee of constraint satisfaction, which may result into
evaluating poor performance parameters.

In the literature of Constrained Bayesian Optimization
(CBO), SAFE-OPT [8], [5], [24] is introduced as an algo-
rithm that aims to provide high-probability guarantees of
constraint satisfaction. The algorithm leverages the regularity
assumption on the objective function and the Lipschitz
continuity to identify a set within the parameter domain
where the constraints on the underlying objective function
are unlikely to be violated. Even though SAFE-OPT has
been proven to guarantee safety, it tends to explore the
complete safe parameter region, consequently leading to
sample inefficiency in relation to the optimization task.

In order to tackle the sample inefficiency issues of safe
exploration, the authors of [6] propose GOOSE, a goal-
oriented safe exploration algorithm for any interactive ma-
chine learning methods. GOOSE leverages the regularity
assumption on the constraint function to define over- and
under-approximations of the safe set. A goal within the over-
approximated set is defined at each iteration with the purpose
of steering the recommendations of GOOSE towards the goal
while ensuring safety.

In this paper, we propose to exploit goal-oriented safe
exploration to tackle the problem of tuning the cost function
weights of an MPC.

III. PROBLEM STATEMENT

We consider a non-linear dynamical system controlled
using an MPC with cost function parameters θ ∈ RNθ , see
Section IV-A for details on MPC. We define a function q :
D → R, where D ⊆ RNθ is a finite domain of cost function
parameters, that measures the performance of a given set of
tuning parameters. The performance function q(θ) is a-priori
unknown and needs to be learned with data. To learn the
performance function, at any iteration n, one can control the
system with an MPC using any parameter θn ∈ D and obtain
a noisy observation of q(θn). We examine the problem
of finding the parameters that maximize q while ensuring
that the performance is above a user-specified performance
threshold τ in all iterations, i.e., q(θn) ≥ τ,∀n ≥ 1.
Ideally, we do not want to execute all parameters, but only
those that are essential to guarantee convergence to optimal
parameters while always satisfying constraints.

Clearly, without making any assumptions, this is not possi-
ble, since we do not even know if the initial set of parameters
will satisfy the performance constraint. Therefore, we make
the following safe seed assumption.

Assumption 1 (Safe seed): An initial safe set of parame-
ters S0 ⊂ D is known, i.e., ∀θ ∈ S0, q(θ) ≥ τ .
This assumption can be readily ensured by having an MPC
controller that can control the system to obtain measurements



of performance function q. E.g, in autonomous racing, pa-
rameters of an MPC controller (need not be optimized) that
can drive the car to finish the lap will satisfy assumption 1.

Next, since the function q is a-priori unknown, for ex-
ploration, we need a mechanism such that knowing about
q at certain θ provides us with some information about the
neighboring region. To this end, we make some regularity
assumptions on the objective function q.

Assumption 2: The domain D is endowed with a positive
definite kernel kq(·, ·), and that q has a bounded norm in the
associated Reproducing Kernel Hilbert Space (RKHS) [25],
||q||k ≤ Bq <∞.
This assumption allows us to use Gaussian Processes
(GPs) [4] to model the objective function q, see Section IV-B
for more details on GPs. It captures the property that similar
parameters lead to similar performance outcomes. This as-
sumption is common in several prior Bayesian Optimization
works that use GPs to model the unknown function [20], [6],
[8]. We consider that constraint q is L-Lipschitz continuous
with respect to the metric d on D. This is automatically
satisfied, for e.g., while using common isotropic kernels,
such as the Mátern and Gaussian kernels.

Using assumptions assumptions 1 and 2, we construct a
true reachable set up to user-defined precision ϵ denoted by
Sq,ϵ. This set includes all the parameters that can be reached
starting from safe seed S0, while always being safe with ϵ
margin, i.e, q(θ) ≥ τ + ϵ (see Section IV-C for details on
how to construct this set). Thus, for the problem of safe
controller tuning, the best any tuning algorithm can attain is
the following,

θ∗ := argmax
θ∈Sq,ϵ

q(θ). (1)

COAT-MPC objective. To conclude the problem statement,
we want to guarantee convergence to a θg , which satisfies
q(θg) ≥ q(θ∗)− ϵ, where ϵ > 0 is a user-defined accuracy.
We shall ensure constraint satisfaction for all iterations, i.e.,
q(θn) ≥ τ,∀n ≥ 1 and should complete the tuning process
in a finite number of samples.

IV. BACKGROUND

In this section, we first explain the underlying MPC used to
control the system in Section IV-A, then we delve into Gaus-
sian Processes in Section IV-B which is used to model the
unknown function q. Finally, we introduce concepts of safe
exploration that we utilize in COAT-MPC in Section IV-C.

A. Model predictive control (MPC)
In MPC, a controller optimizes the system’s predicted

performance by minimizing a defined cost function while
ensuring that constraints are satisfied. In particular, an MPC
can be formulated as follows:

X∗,U∗ = arg min
X,U

N∑
k=1

l(xk,uk,θ) (2)

s.t. x0 = x̂, xk+1 = f(xk,uk)

xk ∈ X , uk ∈ U

where xk ∈ RNx is the system state with Nx states,
uk ∈ RNu is the control input with Nu controls,
f(xk,uk) : RNx × RNu → RNx denotes the system
dynamics, and l(xk,uk,θ) : RNx × RNu × RNθ → R is
the cost function. The weights θ shape the cost function and
play a crucial role in the system’s performance.

B. Gaussian processes

Gaussian Processes (GP) [4] are probability distributions
over a class of continuous smooth functions. GPs are
characterized by mean µ : RNθ → R and a kernel function
k : RNθ × RNθ → R, which captures the notion of
similarity between data points. Without loss of generality,
we normalize such that k(θ,θ) ≤ 1,∀θ ∈ RNθ . Given
a set of n noisy samples collected at An = {θi}ni=1

perturbed by ηn ∼ Qη i.i.d. σ-sub-Gaussian noise given by
yn = [q(θ1) + η1, . . . , q(θn) + ηn]

⊤, we can compute the
posterior over q in closed form using,

µ(n)
q (θ) =k(n)

q

⊤
(θ)(K(n)

q + Inσ
2
η)

−1yn

k(n)q (θ,θ′) =k(n)q (θ,θ′)−
k(n)
q

⊤
(θ)(K(n)

q + Inσ
2
η)

−1k(n)
q (θ′)

σ(n)
q (θ) =

√
k
(n)
q (θ,θ)

where the covariance matrix K(n)
q is defined as

K(n)
q (i, j) = k

(n)
q (θi,θj), i, j ∈ {1, . . . , n}, and

k(n)
q (θ) = [k

(n)
q (θ1,θ), . . . , k

(n)
q (θn,θ)]

⊤ and
σ
(n)
q : RNθ → R denotes the predictive variance.
Additionally, we define the maximum information capac-

ity γn ..= supA⊆D : |A|≤n I(yA; q) associated with the kernel
kq , where I(yA; qA) denotes the mutual information between
q evaluated at locations in the set A and the noisy samples
yA collected at A [26]. Intuitively, it quantifies a best case
scenario where we can select the measurements in the most
informative manner. This definition allows us to build up on
safe exploration in the following section.

C. Safe exploration

In this section, we introduce the necessary tools from prior
works [6], [8] required to safely explore the domain of cost
function weights efficiently. In order to safely explore the
domain, we need to reason about the parameters that could
eventually be included within our safe set of parameters,
as well as continuously evaluate the parameters which have
already been classified as safe.
Reachable set and safe set approximations. To this end,
by utilizing the GP posterior (??), we construct interesting
lower and upper confidence bounds on q at each iteration
n ≥ 1 as:

ln(θ) := max (ln−1(θ), µ
(n−1)
q (θ)− βnσ(n−1)

q (θ)),

un(θ) := min (un−1(θ), µ
(n−1)
q (θ) + βnσ

(n−1)
q (θ)),

with l0(θ) = µ
(0)
q (θ) − β1σ0

q (θ)) and u0(θ) = µ
(0)
q (θ) +

β1σ
0
q (θ)). Note that by construction with intersecting con-
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Fig. 2: Pessimistic and optimistic operators evaluated at x0. The operators
make use of the GP upper and lower confidence bounds, as well as the
L-Lipschitz continuity.

fidence bounds, ln(·) is non-increasing and un(·) is non-
decreasing function in n, i.e.,

ln+1(θ) ≤ ln(θ), un+1(θ) ≥ un(θ) ∀θ ∈ D.
Using the intersecting confidence bounds and the GPs error
bounds from Theorem 2 of [27], the following corollary [24]
follows directly:

Corollary 1 (Theorem 2 [27]): Let assumption 2 hold. If√
βn = B + 4σ

√
γn + 1 + ln(1/δ), it holds that ln(θ) ≤

q(θ) ≤ un(θ),∀θ ∈ RNθ with probability at least 1− δ.
Throughout this work, we implicitly use

√
βn from Corol-

lary 1. Similarly to GOOSE [6], we next define a one-step
reachability operator exploiting the L-Lipschitz continuity of
q and build a pessimistic and an optimistic constraint satis-
faction operators over it using high probability confidence
bounds.

rϵ(S) = {θ ∈ D | ∃θ′ ∈ S : q(θ′)− ϵ− Ld(θ,θ′) ≥ τ}
pn(S) = {θ ∈ D | ∃θ′ ∈ S : ln(θ

′)− Ld(θ,θ′) ≥ τ}
oϵn(S) = {θ ∈ D | ∃θ′ ∈ S : un(θ

′)− Ld(θ,θ′)− ϵ ≥ τ}

A visual representation of the pessimistic and optimistic
operators evaluated at a single point is depicted in Fig. 2.
For notational convenience we denote r(S) := r0(S) when
referring to ϵ = 0 case (analogously for the pessimistic and
the optimistic operator as well). By applying these one-step
safety operators recursively, we next define the pessimistic,
optimistic and reachability expansion operators as:

R̃ϵ(S) = lim
m→∞

Rϵ,m(S) (3)

P̃n(S) = lim
m→∞

Pm
n (S) (4)

Õϵ
n(S) = lim

m→∞
Oϵ,m

n (S) (5)

where Pm
n (S) := pn(pn · · · (pn(S))) and Oϵ,m

n (S) :=
oϵn(o

ϵ
n · · · (oϵn(S))) are the m-step pessimistic and optimistic

expansion operators. Using the expansion operators on Spn−1

we obtain a pessimistic Spn = P̃n(Spn−1) and an optimistic
So,ϵn = Õϵ

n(Spn−1) estimates of the true safe set. Analogously,
Rϵ,m(S) := rϵ(rϵ · · · (rϵ(S))) denotes the the m-step ϵ close
true reachability operator. Applying the reachability operator
from Eq. (3) on the initial safe set S0, we obtain the ϵ−close

true reachability set Sq,ϵ = R̃ϵ(S0), which includes all the
parameters while being at least ϵ conservative from violating
the constraint.

V. COAT-MPC

In this section we present our novel algorithm COAT-
MPC, for the optimization of MPC cost function parameters
while respecting the performance constraint. The algorithm
is presented in Algorithm 2 with its optimality guarantees
deferred to Section VI.

Intuition. To guarantee safety, we construct a pessimistic
and an optimistic set at each iteration, Spn and So,ϵn , using
the pessimistic and optimistic expansion operators of Eqs. (4)
and (5). We define a goal, θg

n, within the optimistic set
as our target recommendation. COAT-MPC recommends θg

n

only if it is included in the pessimistic set, otherwise, the
algorithm performs a safe expansion to learn about the safety
of the goal. While GOOSE performs the safe expansion until
θg
n ∈ Spn or θg

n /∈ So,ϵn , COAT-MPC recomputes θg
n after

each time iteration, thus only performing one safe expansion
iteration. Furthermore, COAT-MPC’s safe expansion consists
of sampling the closest parameter to the goal within the
pessimistic set, instead of sampling at the most uncertain
expander. A visualization of COAT-MPC in the 1D setting is
depicted in Figure 3.

Safe Expansion. COAT-MPC’s safe expansion strategy, out-
lined in Algorithm 1, consists of recommending the closest
point to the goal, with respect to the Euclidean distance,
inside the pessimistic set and that is not ϵ-accurate. Thus,
COAT-MPC cautiously recommends safe parameters that
are as close as possible to the goal, while maintaining
exploration through the statistical confidence ϵ. Thus, if the
algorithm is certain enough about the performance q of a
parameter, it will not futher explore it.

Algorithm 1 Safe Expansion (SE)

1: Input: Spn,θg
n

2: Recommend: argminθ∈Sp
n
||θg

n − θ||2, s.t. wn(θ) ≥ ϵ

Phases of COAT-MPC. Following assumption 1, we initial-
ize the algorithm with a safe parameter seed, S0, where the
constraint q(θ) ≥ τ,∀θ ∈ S0 is known to be satisfied. In
Line 2, we initialize the pessimistic set to the safe seed
S0 and the optimistic set to the parameters domain D. At
the beginning of every iteration, we compute the goal θg

n

by means of the Upper Confidence Bounds (UCB) over
the optimistic set (Line 4) and the width of the confidence
bounds wn−1(θ) = un−1(θ)− ln−1(θ). We then distinguish
between three different cases depending on weather the goal
is in the pessimistic set and on the knowledge that we
currently have about it.

1) The goal is in the pessimistic set and it is ϵ-accurate
(wn−1(θ

g
n) < ϵ): we have reached our goal (Lines 5

and 6), since we know that the goal is safe and we have
explored the space up to the statistical confidence.



(a) COAT-MPC at n = 5 (b) COAT-MPC at n = 15 (c) COAT-MPC at n = 28. Final iteration.

Fig. 3: COAT-MPC illustration. The algorithm learns the pessimistic (green bar) and optimistic (orange bar) sets, and safely explores the parameter space.
At n = 5, the goal is outside of the pessimistic set, although it is inside the optimistic set. COAT-MPC expands the pessimistic set by approaching the
goal. It reaches the goal at n = 15, and by further expanding the sets, it discovers the maximum of the function at n = 28. (i) The gray, dashed line
represents the true function. (ii) The red, dashed line represents the constraint. (iii) The blue line represents the Gaussian Process mean, and the shaded
blue area represents the confidence bounds (µn(θ)± βnσn(θ)). (iv) The cross markers represent the samples, with yellow denoting the first sample and
red the COAT-MPC recommended sample. (v) The green dot denotes the goal at each iteration.

2) The goal is in the pessimistic set but it is not ϵ-
accurate: we recommend the goal and update the GP
after getting a noisy evaluation of q to update our
confidence about the goal (Lines 7 and 8).

3) The goal is not in the pessimistic set: we trigger
Safe Expansion, Algorithm 1, and update the GP after
getting a noisy evaluation of q (Lines 10 and 11).

If the algorithm has not terminated, the pessimistic and
optimistic sets are updated using their expansion operators
(Lines 13 and 14). This way, we safely expand the possible
safe parameter candidates and safely explore the parameters
domain.

Algorithm 2 COAT-MPC

1: Input: Safe seed S0, q ∼ GP(µ0(θ), k0(θ,θ
′
)), τ , D,

Lipschitz constant L
2: Sp0 ← S0, So,ϵ0 ← D
3: for n = 1, . . . Nmax, do
4: θg

n ← argmaxθ∈So,ϵ
n−1

µ
(n−1)
q (θ) + β

1/2
n σ

(n−1)
q (θ)

5: if θg
n ∈ Spn−1 and wn−1(θ

g
n) < ϵ then

6: Terminate
7: else if θg

n ∈ Spn−1 then
8: yn ← q(θn) + ηn and Update GP
9: else

10: θn ← SE(Spn−1,So,ϵn−1,θ
g
n)

11: yn ← q(θn) + ηn and Update GP
12: end if
13: Spn ← P̃n(Spn−1)

14: So,ϵn ← Õϵ
n(Spn−1)

15: end for
16: Recommend: θg

n

VI. THEORETICAL ANALYSIS

In this section, we present our core theoretical result, i.e.,
convergence to optimal tuning parameters while ensuring
performance constraint in finite time with high probability.
For the sample complexity result, we make the following

regularity assumption which is easy to ensure by using a
suitable kernel.

Assumption 3:βnγn grows sublinear in n, i.e., βnγn <
O(n).

Such assumptions are common in most prior works [9],
[6] aimed to establish sample complexity or sublinear regret
results and are not restrictive. This can be satisfied for com-
monly used kernels, e.g., linear kernels, squared exponential,
Matern, etc., with sufficient eigen decay [28], [16] under the
bounded Bq assumption 2.

Theorem 1: Let assumptions 1 to 3 holds and n⋆ be the
largest integer such that n⋆

βn⋆γn⋆
≤ C1

ϵ2 with C1 := 8/ log(1+

σ−2). The recommendation of COAT-MPC at iteration n, θ̂n,
satisfies q(θ̂n) ≥ τ,∀n ≥ 1 and the closed loop system (??)
satisfies state and input constraints for all times. Furthermore,
∃n ≤ n⋆ such that the following holds with probability at
least 1− δ:

q(θ̂n) ≥ max
θ∈R̄ϵ(S0)

q(θ)− ϵ.
The proof is in Appendix A. The theorem makes two

statements: firstly, with high probability, any algorithm that
samples at un(θ) − ln(θ) ≥ ϵ in Sn will explore the
full safe domain. Secondly, if sampled as per UCB while
respecting the uncertainty constraint, we are guaranteed to
converge to the optimal solution. In contrast to the earlier
sample complexity results [8], we do not have an explicit
dependence on the domain size |R̄0(S0)|. The value of
n⋆ depends on the accuracy parameter ϵ, the confidence
parameter δ and the maximum information capacity defined
via γn = max|A|≤n I(q; yA), where I(q; yA) is mutual
information between the function f and the observations
yA = qA + ωA at the points in the set A. For commonly
used kernels, γn is known to grow sublinear in n [28], which
implies a finite time convergence (upper bound on n⋆) as
per ??. Moreover, safety is an immediate consequence of
the algorithm since the recommendation of COAT-MPC is
from the safe set formed using the lower confidence bound.
l(θ′) ≥ l(θ) − Ld(θ, θ′) ≥ τ , now if l(θ) ≥ τ using line 7
we are guaranteed to have l(θ′) ≥ τ =⇒ q(θ′) ≥ τ



implying safety at each recommendation location with high
probability.

VII. EXPERIMENTAL RESULTS

We present an evaluation of the COAT-MPC algorithm’s
performance in the context of MPC tuning, as defined in
Sec. III. Our evaluation is conducted using an autonomous
racing simulation and the scaled RC racecar platform shown
in Figure 4. Even though the presented experimental results
focus on autonomous racing applications, the proposed al-
gorithm and theoretical analysis are widely applicable to
the safe tuning of MPC cost function parameters in other
applications.

Fig. 4: 1:28 scale RC racecar [11] and track used in the experiments.

A. Model Predictive Counturing Control (MPCC)

In the proposed experiments with the autonomous racing
platform, we use a particular MPC formulation known as
MPCC (Model Predictive Counturing Control) [10], which is
specifically tailored for autonomous racing in a known track.
In particular, the MPCC for autonomous racing is formulated
as the following nonlinear program:

X∗,U∗ = arg min
X,U

N∑
k=1

−qγγk + eTkQek + uT
kRuk

s.t. x0 = x̂, xk+1 = fd(xk,uk) (6)
xk ∈ X , uk ∈ U , hk(xk,uk) ∈ H

where xk = [xk, yk, ψk, vxk
, vyk

, ψ̇k] is the state of the
car including position, orientation, and velocities, uk =
[δk, Tk] are the input of the car (steering angle and drivetrain
command), γk is the parameter that determines the progress
along the reference trajectory, ek denotes contour and lag er-
rors, fd(·, ·) is the nominal car model consisting of a Pacejka
dynamic bicycle model [29], and hk(xk,uk) are linear and
nonlinear constraints on the states and inputs. The matrix
Q = diag([Qcontour, Qlag]) controls the longitudinal and
lateral deviation from the reference trajectory, qγ regulates
the progress of the car, and R determines the smoothness of
the inputs.

The MPC formulation of Eq. (7) aims to maximize the
progress while penalizing the deviation from the reference
trajectory. It is worth noting that this MPC formulation
does not minimize time. However, we set the lap time

as the objective function of our proposed safe Bayesian
Optimization method to achieve lap time minimization.

B. Experimental Setup

To quantify the performance of the MPC, we define the
objective function q as the negative lap time of a single flying
lap, where the car does not start from a stationary position.
The negative sign is introduced to reflect the objective of
achieving the fastest lap time. Additionally, we establish
the performance upper bound as τ = τscaleq̂(S0), where
τscale ≥ 1 is a scaling factor that is specified by the user,
and q̂(S0) represents a noisy evaluation of the negative lap
time obtained from the initial seed of parameters. Hence, we
constrain the lap times to always be lower than the initial
lap time multiplied by a scaling factor larger than one.

We conduct a comparative analysis of our proposed
method with several non-constrained optimization tech-
niques, namely, GP-UCB [16], Weighted Maximum Like-
lihood (WML) [15], and Confidence Region Bayesian Op-
timization (CRBO) [30]. Additionally, we evaluate our
method against constrained optimization methods, specifi-
cally, (EIC) [21] and SAFE-OPT [8].

In our experiments, we made the decision to jointly
optimize the parameters Qcontour and Qlag . To accomplish
this, we uniformly discretized the parameter space into
10,000 combinations within the range of [0, 1000]

2. These
combinations were then normalized to fit within the range of
[0, 1]

2. Furthermore, we set the initial weights for Qcontour

and Qlag to 500. For the methods that utilized a Gaussian
Process to model the lap time function, such as COAT-MPC,
we selected a Matérn Kernel with a smoothness parameter
of ν = 5/2. A unique length-scale of l = 0.1 was also
chosen for both dimensions. Finally, we choose to evaluate
our algorithm with β = 5.0.

C. Simulation results

We present a comprehensive evaluation of our proposed
method in comparison to the established baseline methods
over a total of 70 iterations, during which the tuning methods
are permitted to sample and assess 70 distinct parameters.
Note that, in this setup, the proposed method, COAT-MPC,
takes less than 70 iterations due to its termination criteria.
As depicted in Table I, our method surpasses the baseline
techniques in terms of minimizing performance constraint
violations while converging to the optimal parameters in
approximately 30 iterations.

0 10 20 30 40 50 60 70
Iterations

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
um

ul
at

iv
e

re
gr

et

Cumulative regret over the iterations
COAT-MPC
SAFE-OPT

GP-UCB

WML
EIC

CRBO

0 10 20 30 40 50 60 70
Iterations

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

C
um

ul
at

iv
e

re
gr

et

Cumulative regret over the iterations
COAT-MPC
SAFE-OPT

GP-UCB
WML

Fig. 5: Mean cumulative regret over time and standard deviation at each
iteration.Left: Simulation results. Right: RC platform results.



Simulation RC platform

Algorithm #Constraint
violations

Min.
lap time[s]

Mean lap time
± std. deviation[s]

#Constraint
violations

Min.
lap time[s]

Mean lap time
± std. deviation[s]

COAT-MPC 0 4.68 5.57± 0.57 0.33 6.49 7.55± 0.50
SAFE-OPT 1.8 4.71 5.84± 0.82 5.33 6.52 7.88± 0.74
GP-UCB 5.2 4.68 5.03± 1.02 7.0 6.82 7.51± 0.77

WML 2.83 4.71 5.30± 0.80 6.66 6.95 7.60± 0.68
EIC 7.0 4.68 5.24± 1.16

CRBO 16.4 4.71 5.55± 1.39

TABLE I: Comparison of COAT-MPC with baselines. The algorithms were run 5 times in simulation and 3 times with the RC platform. The results of
this table are averaged.

Figure 5 illustrates GP estimate of the negative lap time
function, in addition to the samples obtained using our
method. The sampling of the baselines is depicted in Fig-
ure 6. As evidenced in the figures, COAT-MPC initiates the
process by sampling in proximity to the initial parameters,
aiming to expand the pessimistic and optimistic sets. Subse-
quently, the method cautiously samples parameters that result
in an improved lap time, and converges once it is ϵ-certain
that it has found the optimal parameters.

D. RC platform results

After observing the outcomes in the simulated setting, our
algorithm was benchmarked against SAFE-OPT, GP-UCB,
and WML, which proved to be the best options among
all baseline methods with respect to constraint violations.
As shown in Table I, our approach surpasses the baseline
methods in terms of constraint violations and closely ap-
proximates the average mean lap time of GP-UCB, while
effectively converging to the optimal parameters. Moreover,
our method stands out by achieving the lowest cumulative
regret over time, as depicted in Figure 5. Figure 6 illustrates
the GP estimate of the negative lap time function and the
samples obtained using our method and the baselines

VIII. CONCLUSIONS

We proposed COAT-MPC, a constrained Bayesian Opti-
mization method. Our approach leverages the assumption of
Lipschitz continuity in the objective function, allowing the
generation of a pessimistically and optimistically safe set.
We leverage the optimistic set to define a goal location at
each iteration, while we restrict our recommendations to be
within the pessimistic set. We presented a rigorous theoret-
ical analysis of our method, conclusively demonstrating its
ability to achieve finite-time convergence. Additionally, our
comprehensive evaluation against state-of-the-art methods
demonstrated that our method outperforms them in terms
of the number of constraint violations, as well as in cumu-
lative regret over time, in the context of MPC tuning for
autonomous racing.

Despite its advantages, COAT-MPC has certain limitations.
Primarily, it is limited in the number of parameters that it can
simultaneously tune. Our approach discretizes the parameter
space in order to compute the safe set and sample based
on our proposed criterion at every step. This discretization
process, however, triggers exponential growth in memory

consumption, making the method unfeasible for a vast num-
ber of parameters. Additionally, our method is confined to
a single constraint on the objective function and, as such, it
cannot accommodate other system constraints.

APPENDIX

A. Proof of sample complexity bound

The predictive confidence intervals are built recursively as

Qn−1(θ) := [µn−1(θ)± β1/2
n σn−1(θ)]. (7)

Instead of using Qn−1 directly, we use their intersection
Cn(θ) := Cn−1(θ) ∩ Qn(θ), which ensures that the confi-
dence intervals are monotonically contained after the recur-
sive measurements with C0(θ) = [0,∞]. Based on this, we
define un(θ) := maxθ Cn(θ) as the upper confidence bound
on q(θ) where un+1(θ) ≤ ut(θ),∀θ ∈ D and similarly,
ln(θ) := minθ Cn(θ) as the lower confidence bound on
q(θ) where ln+1(θ) ≥ ln(θ),∀θ ∈ D. We define width
of the confidence interval wn(θ) := un(θ)− ln(θ).

Define a pessimistic set Sp,sagen := {θ ∈ D|∃θ′ ∈
D, lqn(θ

′) − Lqd(θ, θ
′) ≥ τ}. This set is motivated from

[7] and will be used to simplify the analysis. Note that
Sp,sagen = pn(D) = limm→∞ Pm

n (D).
The following lemma establishes that our pessimistic set

is always a subset of the one in [7].
Lemma 1: Spn ⊆ Sp,sagen ,∀n ≥ τ .

Proof: Proof by contradiction. Let’s assume ∃θe ∈
Spn\Sp,sagen . Hence for some S ⊆ D, ∃θ′ ∈ S : lqn(θe) −
Lq∥θ′ − θe∥ ≥ τ. Since S ⊆ D, the definition of Sp,sagen

implies θe ∈ Sp,sagen . This is a contradiction.
Corollary 2 (Theorem 1 [7]): Let assumptions 2 and 3

hold. Let n⋆ be the largest integer satisfying n⋆

βn⋆γn⋆
≤ C

ϵ2 ,
with C = 8/ log(1 + σ−2

q ). The sampling scheme θn ∈
Spn−1 : wn−1(θn) ≥ ϵ satisfy q(θn) ≥ τ,∀n ≥ 1 with
probability at least 1−δ and ∃n ≤ n⋆ : ∀θ ∈ Spn, wn(θ) < ϵ.

Proof: The theorem 1 in [7] uses a sampling rule θn ∈
Sp,sagen−1 : wn−1(θn) ≥ ϵ. Our sampling rule as per Line 7 and
Line 10 ensures wn−1(θn) ≥ ϵ. Using Lemma 1, Spn−1 ⊆
Sp,sagen−1 , hence ∃n ≤ n⋆ : ∀θ ∈ Sp,sagen , wn(θ) < ϵ =⇒
∀θ ∈ Spn, wn(θ) < ϵ. ∀θ ∈ Spn, lqn(θ) ≥ τ =⇒ q(θ) which
follows by construction of the confidence bounds crefX and
ensures safety. Hence proved.
Thus, using the result from [7], we terminate the process
within n⋆ iterations. Next, we guarantee the optimality of
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Fig. 6: The figures show the samples of the negative lap time and the GP.
The dashed lines denote the sample trajectories. The yellow cross marker
denotes the initial values of Qcontour and Qlag , the purple cross marker
is the last sample, and the red marker is the sample that yields the best lap
time.

the objective if we converge with uncertainty ≤ ϵ which is
guaranteed by design in the algorithm.

Lemma 2: ∃n ≤ n⋆, Sq,ϵ ⊆ Spn.
Proof: It holds since Spn = P̃n(Spn−1) ⊇ R̃ϵ(Spn−1) ⊇

R̃ϵ(S0) = Sq,ϵ. The equalities follow from definition of the
sets Sq,ϵ and Spn. The set inequality P̃n(Spn−1) ⊇ R̃ϵ(Spn−1)
holds since ∃n ≤ n⋆ : ∀θ ∈ Spn, wn(θ) < ϵ, which further
implies q(θ) − ϵ < lqn(θ). Hence for any S ⊆ Spn, rn(S) ⊆
pn(S). ∀m Pm

n (Spn−1) ⊆ Spn due to monotonicity property.
The last set inequality follows since S0 ⊆ Spn−1.

Lemma 3: Let assumption 2 holds and θgn :=

argmaxθ∈So,ϵ
n−1

µn−1(θ)+β
1/2
n σn−1(θ). If wn(θ

g
n) < ϵ =⇒

q(θgn) ≥ maxθ∈R̄ϵ(S0) q(θ)−ϵ with probability at least 1−δ.
Proof: By definition ∀n ≥ 1, R̄ϵ(S0) ⊆ So,ϵn . Given

wn−1(θ
g
n) < ϵ =⇒ lqn(θ

g
n) > uqn(θ

g
n) − ϵ ≥ q(θgn) − ϵ.

Since R̄ϵ(S0) ⊆ So,ϵn and θ̂ := argmaxθ∈R̄ϵ(S0) q(θ):

uqn(θ̂) ≤ uqn(θgn)
< lqn(θ

g
n) + ϵ

≤ q(θgn) + ϵ

=⇒ q(θ̂) ≤ q(θgn) + ϵ

Hence q(θgn) ≥ maxθ∈R̄ϵ(S0) q(θ)− ϵ.
We now combine the results of the above lemmas in the

following theorem and additionally guarantee the safety of
the closed-loop system throughout the tuning process.

Theorem 1: Let assumptions 1 to 3 holds and n⋆ be the
largest integer such that n⋆

βn⋆γn⋆
≤ C1

ϵ2 with C1 := 8/ log(1+

σ−2). The recommendation of COAT-MPC at iteration n, θ̂n,
satisfies q(θ̂n) ≥ τ,∀n ≥ 1 and the closed loop system (??)
satisfies state and input constraints for all times. Furthermore,
∃n ≤ n⋆ such that the following holds with probability at
least 1− δ:

q(θ̂n) ≥ max
θ∈R̄ϵ(S0)

q(θ)− ϵ.
Proof: Under assumption 1, MPC is feasible and hence

the closed-loop system satisfies the state and input constraints
at all times. We sample in Lines 8 and 11 only if θn ∈
Spn−1 =⇒ ∃θ : lqn(θ) − Lqd(θ,θn) ≥ τ =⇒ q(θ) −
Lqd(θ,θn) ≥ =⇒ q(θn) ≥ τ . Under assumptions 2 and 3,
?? and Lemma 1 shows a sample complexity bound on ∃n ≤
n⋆, beyond which uncertainty in the Spn is uniformly bounded
by ϵ. Once this holds, Lemma 2 shows that we explore the
maximum possible exploration domain. In Lines 8 and 11,
we sample only if uncertainty is ≥ ϵ and we terminate if it’s
less than ϵ which happens by ??. Further Lemma 3 establish
the resulting optimality of the COAT-MPC algorithm. Hence
proved.

We are using a modified GOOSE in the sense that the
sampling strategy is as per SageMPC but the set definition
is as per GOOSE but without dynamics. We need to do this
to be able to relate the growth of the set with respect to the
initial location of the agent.

Logic of proof:
Spn ⊆ Spl,sagen holds directly by definition. At n⋆ the
uncertainty is less than ε everywhere. so the algorithm



terminates. Show that So,ϵn ⊆ Spn holds directly since the
uqn(θ)− ϵ ≤ lqn(θ).
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